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PREFACE

This report summarizes the research carried out under the Office of the Naval Research grant #
N0014-92-J-1030 during the period 1991-94.

The tasks accomplished are: (1) Synthesis and Analysis of optical waveguides with prescribed TE and
TM modes; (2) development of computer program based on Darboux transform to create refractive index
for waveguides with prescﬁbed propagation constants; (3) development and testing of direct scattering
solver to analyze optical waveguides; (4) analysis of truncated permittivity profile to form optical guiding
structures; (5) development of inverse scattering theory for the design of planar optical waveguides with
same propagation constants for different frequencies; (6) Analysis of coupling in multilayered waveguides
using inverse scattering techniques; (7) modeling and developing inverse scattering theory for guided wave
optical interconnects; and (8) studies on Levinson’s theorem to estimate the number of propagating modes
in a waveguide.

Seventeen journal articles have been published during the period 1991-1994 based on the research
carried out on this project. Two Ph.D. dissertations and three M.S. theses were carried out under this grant.

Reprint and Preprint of selected research articles are attached in the appendix.

The award of this grant has been of great help to me and my students in carrying out our research

and is gratefully acknowledged.

Richardson, TX Lakshman S. Tamil
Dec. 10, 1984 Principal Investigator




DESCRIPTION OF RESEARCH CARRIED OUT

1. Introduction

The conventional method of designing optical guided-wave devices or structures is to assume a
refractive index profile and solve the governing differential equation to find the various propagating modes
and their propagation characteristics. If the propagation characteristics do not meet the expected behavior,
the refractive index is changed and the propagation characteristics are again evaluated; this is repeated
until the expected propagation behavior of the modes are obtained. This being an iterative procedure, it
is time consuming. Also, to obtain certain arbitrary transmission characteristics, one may not be able to
guess the correct initial refractive index profile.

The procedure discussed in this report as opposed to the direct method, starts with the required
propagation characteristics of the guided-wave device and obtains the refractive index profile as the end
result. We achieved this by transforming the wave equation for both the TE and TM modes in the planar
waveguide to a Schrodinger type equation and then applying the inverse scattering theory as formulated
by Gelfand, Levitan and Marchenko [1-2]. The inverse scattering problem encountered here has a direct
analogy to the inverse scattering problem of the quantum mechanics. The refractive index profile of the
planar waveguide is contained in the potential of the Schrodinger type equation and the propagating modes
are the bound states of the quantum mechanics [3]. In general the guided-wave devices are based on
channel waveguides, however we have considered here ‘planar waveguides for mathematical simplicity.

The theory presented here can be extended to channel waveguide structures though it is non-trivial.

2. Physical Model of a Planar Waveguide

The wave equations for the inhomogeneous planar optical waveguides can be derived from the
Mazxwell’s equations. If we take z as the propagation direction and let w represent the frequency of laser
radiation, we have the following wave equations for one dimensional inhomogeneous planar waveguides

(4]

d2
5 By(2) + [e(#) — 7] By (s) = 0 W
for TE modes and
d2 ez
)+ 52| oy )] + (o) - ) Bu(e) = 0 @

for TM modes. The planar waveguide we are considering here has a refractive index which varies
continuously in the z direction. For the planar optical waveguide shown in Fig. 1, our problem is to

find the refractive index profile function in the core for a set of specified propagation constants.




We assume that this planar waveguide has a refractive index profile guiding N modes. The propagation
constants {8,} are kon1 > fB1 > P2 > ...Bn > koneo, in Which ny, is the value of n(z) as ¢ — oo
and n; = sup n(z). Designing an optical waveguide is analogous to the inverse problem encountered in
quantum mechanics. We are trying to get the potential function from the given bound states and scattering

data. The wave equation for the TE modes can be easily transformed to an equivalent Schrodinger equation

A B+ - V@R E) =0 ®
by letting
V(z) = —kg [n*(z) — ng,] @)
and
k2= —k2 = — (8% — kinl) . )

We can see in our case the potential function V(z) is continuous and V(z) — 0 as | z |- co. The TE
mode cases have been solved by Yukon and Bendow [5] and Jordan and Lakshmanasamy [6].
We now need to transfer the wave equation for the TM modes to Schrodinger type equation to

apply the inverse scattering method. In Eq. (2), the first derivative of E, can be eliminated if we let

E,(z) = ¢ /?(2)®(z). The wave equation then becomes

d®? 1 d%(z) 3 (de(x))2

2 2 —
W? %@ da? | 1e() \ da @+ (koe(a) = F)@ =0 . ©

We are now able to obtain the equivalent Schrodinger equation

d>®(z)

o+ [P = V(@)]2(2) =0 NG

by setting the potential function as

3 /d 2 1 a2
V(=)= 462(m)< il(::)>  2¢(x) dEaE:) = kg (e(2) = ) ®
and letting
k2= —k2 = k2n2 — B2 . ®

The TM mode case has been solved by Tamil and Lin [7].




3. Inverse Scattering Theory

The inverse scattering theory of Kay and Moses [8] provides us a way to obtain the potential from
the reflection coefficient which characterizes the propagation properties of the planar waveguide. As the
potential we defined vanishes at infinity, we can apply the Gelfand-Levitan-Marchenko (GLM) equation
to solve our problem. Let us consider a time-dependent formulation of the scattering. We take the Fourier

transform of Eq. (7) [the transform pairs are ®(z, k) <> ¥(z,t) and k < t] to obtain

5? 9?
—é;g\ll(x,t) - ﬁ\I/(:c,t) —V()¥(z,t) =0, (10)

in which ¢ is the time variable with the velocity of light ¢ = 1. The incident plane wave is represented

by the unit impulse

VY(z,t)=6(x—1t), <0, t<0, (11)

which will produce the reflected transient wave function

* N
— 1 —ik(z+t) —ikp(c+1)
R(z+t) = o / r(k)e dk + ;Ane , (12)
where k% = —«2 are the discrete eigenvalues of Schrodinger-type [Eq. (7)], r(k) is the complex reflection

coefficient, A,, are arbitrary constants normalizing the wave equation such that

+o0

/ @(z)®*(z)dz =1 . 13)

—0Q

The reflected transient is produced only after the incident unit impulse has interacted with the

inhomogeneous core of the optical waveguide and therefore
Rz +t)=0 for z+t<0 . (14)

A linear transform independent of k& can now relate the wave amplitude ¥(z,t) in the core region with

the wave amplitude ¥o(z,t) in the exterior region

. : (15)

U(a,t) = {‘I’O(x’t) + ] K (a6 )uo(¢ 1) ae =0
To(z,t) 2 <0

Here the exterior field is

Yo(z,t) =6(c —t) + R(z+1) . (16)




From physical consideration, since ¥(z,t) is a rightward moving transient
Y(z,t)=0 for t<z. 17

Thus the kernel K(z,t) = 0, for ¢t > z and K(z,t) = 0 for ¢ < —z. We substitute Eq. (16) into Eq. (15)
and using Eqs. (14) and (17) yield the integral equation

T

K(z,t) + R(z +1) + / K(x,g’)R(g’ +t)d§’ =0 t<z. (18)
By substituting Egs. (15) into Eq. (10) the kernel K (,t) satisfies a differential equation of the same

form as Eq. (10) provided the following conditions are imposed
K(z,—z)=0, 19)

and
2%1{(:0, z)=V(z) . 20)

We now could see how the solution of the integral Eq. (18) for the function K(z,t) can lead to the

synthesis of optical waveguides.

4. Design Example 1: Zero Reflection Coefficient

The reflection coefficient characterizes the propagation properties of the guided-wave optical devices.
The zero reflection coefficient characterizes a system with propagating modes only, whereas a non-zero
reflection coefficient characterizes a system with both guided and non-guided modes. Let us first consider
the special case of zero reflection coefficient [9]. We substitute Eq. (12) for »(k) = 0 in Gel’fand-Levitan-
Marchenko equation [Eq. (18)] to obtain

T

N N
K(z, )+ Y Ane™ @+ 3" 4, / K(z,&)e(+de =0 . @1

n=1 n=1 —00

It is clear from the above equation that the solution for K(z,t) should have the form [9]

N
E(z,t) = fa(z)es* . (22)
n=1
We substitute Eq. (22) into Eq. (21) produces a system of equations for f,(z):
N
(Kv+En)T
Ay (e——) Fo(2) + fa(z) + Ane® =0 (23)
v=1 Kn + Ry




where n = 1,2,...N. This system can be conveniently written as
[AJlf]+[B] =0 4

where [f] and [B] are column vectors with f, and B, = A, exp (k) respectively, and A is a square

matrix with elements

@25

Ayp = byn+ A <6(N”+n")x)

Ky + Kn
in which §,, is a Kronecker delta. The solution for f is f = —A~!B and then from Eq. (22)

K(z,z) = ETf where E is the column vectors with element E,, = exp(knz) and T denotes transpose.

Now,
iAm = A, elsvten)e — B B, (26)
dz
and so
I{(z,az) =E.fn= _EnA;r}BV = A;nldiAnV @7
T

when written with subscript notation and the summation convention. The K (z,z) given by Eq. (22) can

be recognized in the form

K(z,z)=tr (A“l -i—:) = -j—x In (detA) (28)

and therefore the potential V(z) according to Eq. (20) is

dz
V(z) = —2W In(detA) . (29)

Given N modes with desired propagation constants, we can obtain a potential function as given by

Eq. (29). Here we have N degrees of freedom due to N arbitrary constants {4, | n =1,2..N}.

For TE modes the refractive index profiles is simply given by

n?(z) = n?, — Vlgg)

in which kj is the free space wave number. Where as for TM modes, obtaining the refractive index profile

(30

is more complicated because it is a solution to a nonlinear differential equation [Eq.(8)]. The nonlinear
differential equation can only be solved numerically. First we transform Eq. (8) in to a convenient form

by setting e(z) = e¥(®), we then obtain,

1d%y(z) l[dy(w)

2
y(<) —k2n2 ] = 1
50 i ] + koe?®) + [V(z) — k§n2,] =0 . (€1))]

This is a constant coefficient equation which yields the refractive index profile 4 /¢(z) provided the potential
V(z) is given.




3. Design Example 2: Non-Zero Reflection Coefficient

In the previous section, we took advantage of assuming that the reflection coefficient is zero, which

simplified the problem a lot. Now we are going to solve the problem with non-zero reflection coefficient.

We take the rational function approximation for our scattering data. We represent our reflection
coefficient using a three-pole rational function of transverse wave number k [6], the three poles are: one
pole on the upper imaginary axis of the complex k plane, which represents discrete spectrum of function
R(z +1t) [Eq. (12)] characterizing the propagating mode. Two symmetric poles lie in the lower half of
the & plane, which represent the continuous spectrum of R(z + ¢) characterizing the unguided modes. The

three-pole reflection coefficient can be written as

o
(k) = , (32)
O = - k)
where rg can be determined by the normalization condition r(O) = —1, this condition ensure total reflection
at k = 0. k1, ko have following forms: ky = —c; — icy and kg = ¢; — ico. The third pole on the positive

imaginary axis is k3 = {a.
The pole positions are confined to certain “allowed regions” that are determined by the law of

conservation of energy, which can be represented by [r(k)[* < 1 for all real k; see Fig. 2 and refer
to Ref. [6] for details.

It has been shown that the reconstructed potential function V(z) has‘following form:

d(aT(:c)) vy —1,09(A=)) | 4 -1
V() = 2| === —a’ (@)A7 (@) === | A7} (=)b (33)
in which, a and b are column vectofs, and are given by
al(@)=[1 z em® ¢me gme g=mee] (34)
bT=100 000 0 —a(+cp)], (35
where
1, 2 2, 1,9 0n1/2¢ o 21/21/2
n = [ga +c2—cl+§(a —4c3) " (a® +4c?) ] (36)
1, 2 2 1.4 n1/2, o 21/21/2
m = |50 +c2—c1—§-(a —4c3)"""(a® +4c?) ] . 37



Matrix A(z) is given by

ro 1 0 0 0 0 T
0 0 fm) a2 +c3) 0 0
0 0 0 0 a(c? +c2

F(n2) ( 1 2) ’ (38)

1 —z e~ Mme eh? e~ N2% el2®
0 —1 —me™™®  me™®  mpe”F ppele®

L0 0 pfe™®  plem  pZeT™®  pieta?

where
f(z) = 2% + (2c2 — a)z® + [¢} + 2 — 2acs]z — a(c? + ) . (39)

So, it is possible to construct the potential from the three poles of reflection coefficient using the

above equations.

6. Design Example 3: Non-rational Reflection Coefficient

The refractive index profiles reconstructed for the cases discussed above go to zero asymptotically
and they approximately model the actual refractive index profiles used in practice. The refractive index
profiles used in practice are truncated and the truncations form the core-cladding boundary. For a doubly
truncated refractive index profile modeling a planar optical waveguide, the reflection coefficient is not
a rational function of the complex wavenumber, but a more complicated form [10-12]. Reconstructing
refractive index profiles for non-rational reflection coefficients is not possible in analytical closed forms

and so numerical techniques must be used.

A. Discretization of G-L-M equation

To solve the G-L-M equation (18) by numerical methods, the space-time diagram is discretized into
square grids rotated by 45° with respect to abscissa, as shown in Fig. 3. The interval At = 2Az and
z = mAz, m = 0,1, ...N, where N is the total number of grid points along the z direction, and
t =nAt — (m/2)At, n=0, 1, ..., m. The G-L-M integral equation can then be discretized as

Km(n)+ Rn(n) + i COHEn(DR,(DAt=0, n=0,1, ..., m 40)
I=m—n
where y = 1At — (m/2)At. The subscript m in K,,,(n) represents the grid position along the z direction
and the argument n represents the grid position along the ¢ direction. C(1) is the coefficient for numerical
integration; if the trapezoidal rule is used,
1/2 l=m—nandm

cQ) = { : @1)

1 elsewhere




B. Iteration scheme with relaxation

The Gel’fand-Levitan-Marchenko equation is an integral equation of the second kind and can be

solved numerically in an iterative manner. We rewrite Eq.(40) as

Ki(n) = ~Rm(n) — i COKLT (DR (DAL, 42)
l=m—n
where the superscript i in K, (n) represents the i-th iteration result. It is worth pointing out that the
iterative process involves only the grid points on the m-th column in Fig. 3.
In Eq. (12) the poles on the positive imaginary axis kn = ikn, Kn > 0, are in the discrete
spectrum and correspond to the guided modes. The exponential term in Eq.(12) then grows rapidly as

(z + t) increases and in order to improve the convergence, the relaxation technique is used [13], so that

Eq.(42) is revised as
K, (n) =(1 - w)Ki ' (n)

+w|—Rp(n) — f: C(HKITH (DR (DAL, 43)

l=m-—n

where w is the relaxation factor. If w lies between 0 and 1.0, it is called the under-relaxation method; if
w lies between 1.0 and 2.0, it is called the over-relaxation method. In our computations, w < 0.7 provides

the desired results.

C. Initial values for K(x,t)

The convergence of analytical solutibn to the G-L-M equation has been proved [14]. However, the
convergence of its discretized form cannot be ascertained, because of the additional errors due to truncation
and discretization. Good initial values for K(z,t) are important for the numerical iterative scheme, in
particular when a bound state corresponding to the propagating mode exists. The Born approximation has
been used by other authors to provide initial trial values for K (z,t) for cases where there are no bound
states. However, for cases discussed here, where there are bound states, the Born approximation when used
to provide the initial values for K (z,t) fails to reconstruct the potential correctly. Although for shorter
lengths of the potenti‘al the reconstruction is in agreement with the actual value, the method fails for larger
lengths. The leap-frogging algorithm [15] provides an effective initial value for K (z,1).

To obtain the leap-frogging algorithm, we substitute Eq.(20) into (10) where ¢(z, t) has been replaced
by K(z,t) yielding

02K (2,1) _ 9°K(z,t) _,dK(z,2)
dz? ot? dz

K(z,t)=0 _ “44)




and introduce new variables v and v, defined as

z—1

= 45

u= (45)
and
z+i

v= 46
7 (46)

(see Fig. 3). With this coordinate transformation, the partial differential equation (44) can be rewritten as

%K (u,v) 0K (u,v)
3 _ ) — 4

5 B V2 5 K(u,v)=0 @7

so that its discretization gives the following equation [15],

Km(n) =Kpm—1(n) + Km-1(n — 1)
(48)
+ {2Az[Kp(n) — Kn—1(n — 1)] = 1} Kp_a(n — 1);n. > 0,m > 0,n = m,

which relates the grid point K,,,(n) with the other five grid points, as shown in Fig. 3. Note that K,,(n) on
the LHS of Eq. (48) is at the “current” reconstruction column m, while the remaining five grid points on
the RHS are all located within its left region, which are either on the boundary whose values are provided
by K(z,—z) = —R(0) or grid points that have already been reconstructed by the step-by-step marching
algorithm marching in the z direction. Equation (48) does not provide values for K,,(m),m =1,2,..N
and a different procedure should be adopted to find those values.

Solving Eq.(42) for K,,(m) yields

CR(m) =5 C() Kom() R (DAL
=0

Kp(m) =

, m>0,m=n 49)
which provides initial trial values for K,,(m). Furthermore, we obtain
K (0) = —R(0). . (50)

To summarize, Eqs. (48), (49), and (50) can provide the initial trial values for K (z,t) necessary for the

iterative numerical solution of the G-L-M equation.

10




D. Reconstruction of the potential v(x)

The potential in its discretized form can be expressed using Eq.(20) as

Kpn(m) — Kpp_a(m — 2)

v(m—-1)= g

m > 2. (1)

This expression can be used to reconstruct the potential when the values of K,,(m);m = 0,1,...N are
already evaluated. This reconstructs the potential at every point in z except at z = 0; corresponding to
the grid point m = 0.

To evaluate the potential at the origin we substitute Eq.(18) into Eq. (20), yielding

_ ,dR(2z)
v(z) = —QT

— K(z,z)R(2z) + / %[K(m, Y)R(y + z)]dy. (52)

Because R(t) = 0 for ¢t < 0, we obtain at the origin

dR(22) | sm0 = —4R(0), (53)

v(0) = -2 I

which is an exact formula for recovering the potential at the origin. It is interesting to note that the

perturbation expansion theory derives the approximate solutions [16]

ofe) = 22522 - %)
and
v(z) = —QCE%(;L) + 4[R(22)]%, (55)

which are called the Born and the modified Born approximation respectively. At the origin, the Born

expression provides an approximate reconstruction, even though there exists a discontinuity at the boundary.
The numerical inverse scattering theory can now be summarized in the following steps:

(a) Compute the potential at the origin, v(0) using Eq.(53) ;

(b)  Set the initial trial values for K,,(n), n =0, 1, ... m on the current column m using Eqs.(48),
(49) and (50) ;

(c) Tteratively calculate K,,(n), n =1, 2, ... m for each value of n on the current column m using

Eq.(42) with an appropriate choice of relaxation factor w ;
(d) Evaluate potential v(m — 1) using Eq.(51) ;

(& Move the current column from m to m + 1, and repeat the steps (b) to (d).




7. Discussion

We have developed a method based on inverse scattering theory that can be used to design planar
optical waveguides that transmit a prescribed number of TE or TM modes with prescribed propagation
constants. To demonstrate some practical examples for the zero reflection case, let us compute the refractive

index profiles for two cases: the single mode case and the N mode case.

For the single mode case, Eq.(23) becomes

i AleZKIx
A1e™? + fi(x) + — fi(z)=0 . (56)
K1
Then, the potential has the form
—4Kk  Aje?F®
Vi) = 1 5 (57)
(14 Aqe?%1® /2k,)

where A; is an arbitrary constant and note that «; can be obtained from

&2 = P2 — k2n2, . (58)

For a desired propagation constant (;, we can get a set of refractive index profiles corresponding to different
arbitrary choice of A;; see Fig. 4. We use the following data relating to waveguide: n(o0) = n; = 2.177,
wavelength A = 0.8um and B; = 17.20 (um)_l. We obtained the refractive index profiles by solving
Eq. (31) using the potential V(z) obtained from Eq. (57). Runge-Kutta’s fourth order approximation is
applied in solving the differential equation (31) [17]. We can see from Fig. 4 that the maximum value of
refractive index lies on the positive side of z = 0 when A; < 2x1; on the negative side of z = 0 when

Ay > 2ky and at £ = 0 when 4; = 2«4.

On substituting A; = 2«; into Eq. (57) yields
V(z) = —2x2sech’x1z . (59

This potential is everywhere negative and goes to zero as z goes to infinity. Also the potential is symmetric
about its minimum point. We can truncate the potential at the point where the potential is 1% of its
maximum value to find the width of the core d. The refractive index profile corresponding to this potential

is shown by continuous line in Fig. 4.

Similarly, for the N mode case, we need to construct the potential first using Eq. (25) and then
solve the nonlinear differential equation (31) for the refractive index profiles. For a set of prescribed -
propagation constants, every arbitrary choice of normalization constants will produce a different potential

and a corresponding refractive index profile. In order to construct a symmetric refractive index profile




with single peak, we found that the normalization constants {A, | n = 1,2...N} must satisfy the following
equation [18]

Ay = \Y 260 FPn (60)

where N ’
Po=(-1" ] g—f—%"- n=1,2..N 61)
v=1(vn) ~ "
for the reflectionless case. Here N is the number of guided modes in the planar waveguide. For the
case N = 5, using sets of arbitrary normatization constants{A4, | n = 1,2...N} we have computed the
refractive index profiles and these are shown in Fig. 5. The symmetric profile obtained using the condition
(60) is shown by continuous line in the figure.

To demonstrate the reconstruction of the potential from a three poles reflection coefficient; a case of
non zero rational reflection coefficients, we have chosen here two examples. In example 1, the poles are
determined by the following parameters: ¢ = 1.0, ¢; = 0.8, and ¢, = 0.499; example 2 has different
unguided modes characterized by ¢; = 0. 05, ¢z = 0.1 and the same propagating mode characterized
by a = 1.0. Figure 6 shows the plots of potential functions for examples 1 and 2. In the example 2, we

see that the potential is everywhere negative.

Figure 7 shows the refractive index profiles for TM mode in both the above discussed examples
obtained by substituting the potentials into the nonlinear differential equation (31) and solving for \/e(z).
We notice that a depressed cladding is obtained in example 1 and we also see that the profiles we found

here resemble the profiles we normally find in practical optical waveguides [19]. ‘

Introducing a truncated potential to model the planar waveguide [11], it can be shown that both
propagating and non-propagating modes appear when the reflectionless potential v(z) = —2 sech?(z) is
truncated at a point on the left z = z,. Based on the Jost solutions corresponding to the untruncated

potential vy = —2 sech?(z), the reflection coefficient from the left for the truncated potential can be
derived [11] as

sech?(z1)

r(k) = —exp (12kz ’
(k) p (i2kz;) k2 + 1+(k+itanh($1))2

(62)
which has two poles in the complex k-plane located at

by = _% [/2 = tanh?(z1) + tanh(zy)| (63)

and

oy = [\/2 ~tanh?(z;) — tanh(zl)]. (64)

N |

13




Since /2 — tanh?(z1) > |tanh(z1)|, both poles are located on the imaginary axis, so that ky = ik
corresponds to the guided mode. The exponential factor exp(i 2kz;) in Eq.(62) represents a shift z; on

the z axis relative to the corresponding untruncated potential. Equation (62) can then be rewritten as

—sech?(z
ro(k) = o) ___ ©5)
k% + 1+ (k + itanh(z1))
in which the phase shift factor has been excluded. The characteristic function is
hZ
Ro(t) = sech(21) {~exp [—0.5 (\/2 — tanh?(z1) + tanh(:vl)) t}
24/2 — tanh?(z,) (66)
+ exp [0.5 (\/2 — tanh?(z1) — tanh(xl))t] }.
Using Eq.(53), the potential at the truncation location is
v9(0) = —2 sech?(z). ©67)
This is a case of non-rational reflection coefficient. Figure 8 gives the potential, assuming z; = —1.0,
where the asterisks show the potential obtained by numerical reconstruction, and the exact potential
vo(x) = —2 sech?(x + x;) (68)

is plotted in solid line for comparison, again good agreement is achieved.

The results obtained by inverse scattering theory can be verified by a finite difference based analysis
scheme. Using this method we find the propagation constants of guided modes of an optical waveguide
with arbitrary refractive index profile. Owing to its simplicity and flexibility, this method is proved to
be very effective. For demonstration purpose we consider here a symmetric planar waveguide. We have
compared in table 1 the propagation constants of various modes that we used in reconstructing the refractive
index profile of the waveguide against the propagation constants obtained by analysis for the normalized
frequency at which the propagation constants are prescribed. We see that last two columns of the table

agree very well. This shows that the inverse technique outlined here can be used to synthesize waveguides

with prescribed modes.

The method demonstrated here can be extended to the synthesis of optical devices [20]-[21] with

specified transmission characteristics. The details are provided in the appendices.
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9. List of Tables

Table 1. Prescribed TM mode spectra used in reconstructing refractive index of planar waveguide and

spectra obtained by analysis using finite difference scheme. .




Tahle 1

number of mode prescribed mode spectra B+/ko obtained by our

modes number v B/ ko analysis
N=1 0 2.18997 2.18995
) 0 2.20556 2.20553
1 2.18417 2.18398

0 2.20926 2.20916

N=3 1 2.19140 2.19100
2 2.18061 2.18036

0 2.21288 2.21266

1 2.20003 2.19968

N=5 2 2.18998 2.18968
3 2.18278 2.18254

4 2.17845 2.17797

0 2.21466 2.21452

1 2.20473 2.20449

2 2.19630 2.19606

N=7 3 2.18927 2.18915
4 2.18397 : 2.18379

5 2.18010 2.17997

6 2.17778 2.17753




10. List of Figures

1.

The physical structure of inhomogeneous symmetrical planar optical waveguide showing the reflection

and transmission of electromagnetic wave.
Permitted regions of the complex & plane for the pole positions in a three-pole reflection coefficient.
Discretized grid diagram in a space-time plane for numerical reconstruction.

The reconstructed refractive index profiles for a single prescribed TM mode with §; = 17.2 and
various A; = 2k,= 3.7386, 0.4 and 0.7 corresponding to the solid, dashed, and dotted curves

respectively.

Reconstructed refractive index profiles for five prescribed TM modes with corresponds to A, =

{1,2,3,3,1} (dashed curve) and for A, satisfying Eq. (60) (solid curve).

Potentials of a waveguide characterized by a three pole rational reflection coefficients. The solid curve
corresponds to a = 1.0, ¢; = 0.8, 2 = 0.499. The dashed curve corresponds to a = 1.0, ¢; = 0.05,
Cy = 0.1.

Reconstructed refractive index profiles corresponding to the potentials shown in Fig. 6.

Potential —2sech?(z) truncated at the left, z; = —1.0. Solid curve, exact potential; circles, numerical

reconstruction.
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An inverse-scattering approach to desi,

gning optical waveguides with prescribed propagation characteristics of
TM modes is presented. The refractiv

differential equation whose forci

e-index profile of the waveguide is formulated as a solution to anonlinear
ng'lfunction is the potential obtained from the a
theory. This method can reconstruct smooth refractive-index profiles for

pplication of inverse-scattering

planar waveguides that support
single modes or multimodes. The cases of both zero and nonzero reflectio

transmission properties of waveguides are discussed. A dire

n coefficients characterizing the

ct analysis technique based on a finite-difference
scheme has been formulated to verify the results obtained

approaches are in excellent agreement.

1. INTRODUCTION

The conventional method of designing optical waveguiding
structures is to assume a refractive-index profile and solve
the governing differential equation to find the various
propagating modes and their propagation characteristics.
If the propagation characteristics do not exhibit the ex-
pected behavior, the refractive index is changed and the
propagation characteristics are again evaluated; this is
repeated until the expected propagation behavior of the
modes is obtained. . Sifice the procedure is iterative, it is
time consuming. Also, to obtain certain arbitrary trans-
mission characteristics, one may not be able to guess the
correct initial refractive-index profile. One normally
thinks of initial profiles that have a mathematically closed

. form, such as parabolic and secant hyperbolic.

The procedure discussed in this paper, as opposed to
the direct method, starts with the required propagation
characteristics of the waveguide and obtains the refractive-
index profile as the end result. We achieve this by trans-
forming the wave equation for both the TE and the TM
modes in the planar waveguide toa Schridinger-type equa-
tion and then applying the inverse-scattering theory as
formulated by Gel’fand and Levitan! and by Marchenko.?
The inverse-scattering problem encountered here has a di-

rect analogy to the inverse-scattering problem of quantum .

mechanics. The refractive-index profile of the planar.

. zero reflection coefficients to desi

by the inverse-scattering method, and the two

gn planar waveguides
with prescribed TM modes. '

In Section 2 we review the problem of electromagnetic
wave propagation in a planar waveguide for both TE and
TM cases,® then we present a way to transform wave equa-
tions into Schrédinger-type equations. In Section 3 we
review Kay's inverse-scattering theory” and the Gel'fand—
Levitan-Marchenko equation.l? Inverse-scattering the-
ory is then applied to planar waveguides for the case of TM
modes in the zero and the nonzero reflection-coefficient
conditions separately. We obtain the single-mode and the
multimode refractive-index profiles with prescribed TM
modes by solving a nonlinear differential equation, using
the Runge—-Kutta fourth-order approximation method, as
discussed in' Sections 4 and 5. In Section 5 we present
the construction of the potentials for a single-mode planar

- waveguide for the nonzero reflection-coefficient case,

waveguide is contained in the potential of the Schrédinger- .**

type equation, and the propagating modes are the bound
states of quantum mechanics.?

An inverse-scattering theory with a zero reflection
coefficient characterizing the propagation property was
applied by Yukon and Bendow to the design of planar wave-
guides.* In that investigation the refractive-index pro-
files were constructed only for the prescribed TE modes.
The inverse problem of designing optical waveguides
whose transmission property is characterized by a nonzero
reflection coefficient was solved for TE modes by Jordan
and Lakshmanasamy.® In this paper we have applied the
inverse-scattering theory with both the zero and the non-

0740-3232/93/091953-10$06.00

using a rational function of wave number to obtain ref lec-
tion coefficients.

To verify the results obtained by

inverse-scattering
theory,

we have developed an efficient finite-difference
method to find the propagation constants of guided TE
and TM modes, and we present the method in Section 6.
We start from the wave equations for TE and TM modes
and transform them into a set of finite-difference equa-
tions. Then a matrix eigenvalue equation, from which
the propagation constants can be found, is constructed.
The numerical results are obtained for several graded-
index waveguides, and we compare these results with pre-
viously published analytical solutions and results obtained

by other numerical methods. The conclusions are given
in Section 7.

2. PHYSICAL MODEL OF A PLANAR
WAVEGUIDE

The wave equations for inhomogeneous planar optical
waveguides can be derived from Maxwell's equations. If
we take z as the propagation direction and let repre-
sent the frequency of laser radiation, we have the follow-

© 1993 Optical Society of America
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Fig. 1. Physical structure of the inho
planar optical waveguide,
an electromagnetic wave,

mogeneous symmetrical
showing reflection and transmission of

ing wave equations for one-dimensional inhomogeneous

- planar waveguides®:

2

;FE,(x) + (ke(x) — BUE,(x) = 0 @

for TE modes and

d? dj 1 dex)
@Ex(x) + a[ : Ex(x)]

@_,,dx :
- + [koe(x) — BAE(x) =0 (2)

for TM modes. The planar waveguide that we are consid-
ering here has a refractive index that varies continuously
in the x direction. For the planar optical. waveguide
shown in Fig. 1, our problem is to find the refractive-index
profile function in the core for a set of prescribed propaga-
tion constants.

We assume that this planar waveguide has a refractive-
index profile guiding N modes.
stants {8.} are kon, > g, > B2 > ...Bn = kon., in which
n. is the value of n(x) as x — w and n, = sup n(x). The
design of an optical waveguide is analogous to the inverse
problem encountered in quantum mechanics. We are,
in effect, trying to obtain the potential function from the

The propagation con-

given bound states and scattering data. The wave equar ’

tion for the TE modes can be easily transformed into ar
equivalent Schrédinger equation, ’

2

-QE,(x) + (k* ~ V(0)IE,(x) = 0, @

by letting
Vix) = ~k’n*(x) — n?], 4
R = —kt = —(8.2 — kgnd). (5)

We can see that in our case the potential function V(x) is
continuous and V(x) — 0 as [x| = ®. The TE mode cases
have been solved by Yukon and Bendow* and Jordan and

Lakshmanasamy,’ and so our discussion will be restricted
to TM modes.

w
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We now need to transfer the wave equation for the TM
modes into a Schridinger-type equation to apply the
inverse-scattering method. In Eq. (2) the first derivative
of E, can be eliminated if we let E,(x) = €~ 2(x)D(x).
The wave equation then becomes

diﬂ + 1 d2%(x) __ 3 |dex) |? ®
dx? 2e(x) dx? 4e¥(x)| dx

+ [ko’e(x) — B%d = 0. (6)

We are now able to obtain the

quivalent Schrédinger
equation, : '

d*®
% + [k* - V(0)]®(x) = 0, (0

by setting the potential function as

3 ldeo)(? _ 1 d%(x) 2
V=) = 4€%(x) [ dx ] T e dar  Role@ - 0]
(8)
and letting
k2 — _Kuz = ko2n~2 — ﬂ"Z. (9)

3. INVERSE-SCATTERING THEORY

The inverse-scattering theory of Kay and Moses® provides
a way to obtain the potential from the reflection coeffi-
cient that characterizes the propagation properties of the
planar waveguide. As the potential that we defined van-
ishes at infinity, we can apply the Gel'fand-Levitan-
Marchenko equation to solve our problem. Let us consider
a time-dependent formulation of the scattering. We take
the Fourier transform of Eq. (7) [the transform pairs are
D(x, k) & ¥(x,8) and & < ¢] to obtain

2

* 3’
-ax—,qf(x, t) - ?‘I'(x, t) - V(x)\xf(x, t) =0, 10)

in which ¢ is the time variable, with the velocity of light
¢=1. The incident plane wave is represented by the

unit impulse
Y(x,t) =8(x — 1), x < 0,t<0, 1)
which produces the reflected transient wave function
R(x + ) = 2—1- J~ r(k)expl—ik(x + £)]dk
7T J -
N
+ D, A. expl—ika(x + )], 12)

Rl

where k* = —x,? are the discrete eigenvalues of the
Schridinger-type equation {Eq. (D)}, r(k) is the complex
reflection coefficient, and A, are arbitrary constants nor-
malizing the wave equation such that

j P(x)P*(x)dx = 1. 13)

The reflected transient is produced only after the inci-
dent unit impulse has interacted with the inhomogeneous

e
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core of the optical waveguide, and therefore

Rx+8t)=0 for x+¢t=0. (14)
A linear transform independent of % can now relate the
wave amplitude ¥(x,¢) in the core region with the wave
amplitude ¥,(x, £) in the exterior region:

Vs, t) = | oD + [ K O%EDE x>0

Yolx, &) x=0
(15)
Here the exterior field is

Yo(x, ) = 8(x — ) + R(x + 0). (16)

From physical consideration, since ¥(x, ¢) is a rightward-
moving transient,

for t<x. a7n

Thus the kernel K(x,t) = 0 for £ > x and K(x,¢) = 0 for

t = —x. We substitute Eq. (16) into Eqs. (15) and use
Eqs. (14) and (17) to obtain the integral equation

V(x,t) = 0

K(x,£) + R(x + ¢) + r K(x, YR + 6de =0,

Lt<x. (18)
By substituting Eqs. (15) into Eq. (10), we can show that
the kernel K(x,t) satisfies a differential equation of the

same form as Eq. (10), provided that the following condi-
tions are imposed:

K’(x, -x) =0, (19)
28 K 0 = V. (20)
dx

We can now see how the solution of the integral Eq. (18)

for the function K(x, £) can lead to the synthesis of optical
waveguides.

4. DESIGN EXAMPLE 1: ZERO
REFLECTION COEFFICIENT

The reflection coefficient characterizes the propagation
properties of optical waveguides. A zero reflection coeffi-
cient characterizes a system with propagating modes only,
whereas a nonzero reflection coefficient characterizes a
system with both guided and unguided modes. Let us
first consider the special case of a zero reflection coeffi-
cient.® We substitute Eq. (12) for r(k) = 0 in the Gel'fand—
Levitan-Marchenko equatiqn [Eq. (18)] to obtain g

N
K(x,8) + >, A, explka(x + )]

n=l

N
+ EAur K(x,flexplk.(t + £)d¢ = 0. (2D

r=1

It is clear from Eq. (21) that the solution for K(x, £) should
have the form®

N
K(x,8) = 3, fux)expkat). (22)

a=l

We substitute Eq. (22) into Eq. (21) to produce a system of
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equations for f,(x):

N
A2 {W}Mx) + fa(x) + Ay expliax) = 0,

=l v

(23)
where n = 1»,2,...N.' This system can be conveniently

written as

Af+B =0, (249)

where f and B are column vectors with fr and B, =

A, exp(k,x), respectively, and A is a square matrix with
elements

Avn. = 8yu + A.{exp[(’(v +"'__‘K'|)x]} ’

Ky + Kq

(25)

in which 8,, is a Kronecker delta. The solution for f is
f = —A™B, and from Eq. (22) K(x, x) = E™f, where E is a
column vector with element E, = exp(k,x) and T denotes
transpose. Now

d .
EAm = Av eXP[(K- + Kn)x] = BuEn ’ (26)

and so

K(x,x) = E,.f, = ~E,A,.”'B, = Am‘ld—i-A,., @n

when written with subscript notation and the summation

convention. The K(x,x) given by Eq. (22) can be recog-
nized in the form

K(x,x) = t‘.r(A‘1 %%) = % In(det A), (28)

and therefore the potential V(x), according to Eq. (20), is
d2 ’
Vix) = —2(1—:1‘:—z In(det A). (29)

Given N modes with desired propagation constants, we
can obtain a potential function as given by Eq. (29). Here
we have N degrees of freedom that are due to N arbitrary
constants {A.|{n =1,2,...N}.

For TE modes the refractive-index profile is simply
given by

v
k(f , 30)

Q

n*(x) = n2 ~

in which k, is the free-space wave number. For TM modes
obtaining the refractive-index profile is more complicated
because it is a solution to a nonlinear differential equation
[Eq. (8)]. The nonlinear differential equation can be
solved only numerically. First we transform Eq. (8) into

a convenient form by setting e(x) = exp[y(x)]. We then
obtain

1d%(x) 1|dyx)]?
L TR

+ (V(x) — ke?nl] = 0. (3D




1956 d. Opt. Soc. Am. AfVol. 10, No. 9/September 1993

2.205

22+

21951

Refractive index
N
%

2185

I A B W
z (um)
R
Fig. 2. Reconstructed refractive-index profiles for a single

prescribed TM mode with 8, = 17.2 and Ay = 2x; = 3.7386, 0.4,

and 7, corresponding to the solid, dashed, and dotted curves,
respectively.

This is a constant-coefficient equation that yields the

refractive-index profile Ve(x), provided that the potential
V(x) is given.

To demonstrate some practical examples, let us compute
the refractive-index profiles for two cases:’ the single-
mode case and the N-mode case.

For the single-mode case, Eq. (23) becomes
A expli;x) + fi(x) + [A—‘e%z"‘i)]f,(x) =0. (32
1

Then the potential has the form

"'4K1A1 exp(2K1x)

Vi = (1 + A; exp(2x,x)/26, (33)

where A, is an arbitrary constant. Note that &y can be
obtained from

ki® = By* — kon.2. 34

For a desired propagation constant B1, we can get a set
of refractive-index profiles corresponding to different ar-
bitrary choices of A; see Fig. 2. We use the following
data relating to the waveguide: n(w) = n, = 2177, wave-
length A = 0.8 um, and B; = 17.20 (um)~!. We obtain
the refractive-index profiles by solving Eq. (31), using the
potential V(x) obtained from Eq. (33). Runge-Kutta’s

fourth-order approximation is applied in solving Eq. (31J.° .
We can see from Fig. 2 that the maximum value of the-

refractive index lies on the positive side of x = 0 when
Ay < 2k, on the negative side of x = 0 when Ay > 2«4,
and at x = 0 when A; = 2«,.

We substitute A; = 2«, into Eq. (33) to obtain
V(x) = _21(12 Sech: Ky Xx. (35)

This potential is everywhere negative and goes to zero as
x goes to infinity. Also, the potential is symmetric about
its minimum point. We can truncate the potential at the
point where the potential is 1% of its maximum value to
find the width of the core d. The refractive-index profile

corresponding to this potential is shown by the solid curve
in Fig. 2.

L.S. Tamil and Y. Lin

Similarly, for the N-mode cage we need to construct the
potential from Eq. (25) first and then solve Eq. (31) for the
refractive-index profiles. For a set of prescribed propaga-
tion constants, every arbitrary choice of normalization
constants will produce a different potential and a corre-
sponding refractive-index profile. To constructa symmet-
ric refractive-index profile with a single peak, we found
that the normalization constants {Axln =1,2,... N} must
satisfy the following equation®:

A=V 2k, P, ’ (36)

where

N
vt Ky
Py= (-1t ] KK

v=1(vrin) Ky ™ Kp

» n=12,...N, &¥)]

for the reflectionless case. Here N is the number of
guided modes in the planar waveguide. For the case
N =5 we use the sets of arbitrary normalization con-
stants {A,|n = 1,2,... N} to compute the refractive-index
profiles, and these are shown in Fig. 3. The symmetric

227
226} :’\

Refractive index

2.17‘4

T e
2 (um)

Fig. 8. Reconstructed refractive-index profiles for five pre-

scribed TM modes with A, = {1,2,3,3,1} (dashed curve) and for
A, satisfying Eq. (36) (solid curve).
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Fig. 4. Potentials of & waveguide characterized by a three-pole
reflection coefficient. The solid curve corresponds to a = 1.0,
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¢1 = 0.8, and c; = 0.499. The dashed
a=10,c; = 005 ¢, =~ 0.1
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profile obtained from Eq. (36) is shown by the solid curve
in the figure.

5. DESIGN EXAMPLE 2: NONZERO
REFLECTION COEFFICIENT

In Section 4 we took advantage of the fact that the reflec-
tion coefficient was zero, which simplified the problem
considerably. Now we are going to solve the problem with
a nonzero reflection coefficient. We follow the work of
Jordan and Lakshmanasamy.®

We take the rational-function approximation_for our
scattering data. We represent our reflection coefficient
by using a three-pole rational function of transverse wave
number k°. One pole lies on the upper imaginary axis of
the complex k plane, which represents a discrete spectrum
of the function R(x + ¢} {Eq. (12)] characterizing the
propagating mode. Two symmetric poles lie in the lower
half of the % plane, which represent the continuous spec-
trum of R(x + ¢) characterizing the unguided modes.
The three-pole reflection coefficient can be written as

o
= ’ 38
") = E TR - B~y B8

where ro can be determined by the normalization condi-
tion r(0) = —1, which ensures total reflection at’k = 0.
ky and k; have the following forms: k; = —¢; — ic; and
k2 = ¢y — ic,. The third pole on the positive imaginary
axis is k3 = ia.

The pole positions are confined to certain allowed re-
gions that are determined by the law of conservation of
energy, which can be represented by |r(k)|? =< 1 for all real

-k; see Fig. 3 of Ref:5 for details.

It has been shown that the reconstructed potential func-
tion V(x) has the following form:

T,
Vix) = z[M ~ aT(x)A"Y(x) d[—A(—"ﬂ]A-l(x)b, (39)
dx dx

in which a and b are column vectors and are given by
a’(x)

={l = expmx) exp(-mx) exp(m.x) exp(—m.x)],
40
bT=[0 0 0 0 0 -—alc?+ ¢, 41

where

m = [%a® + ¢ — ¢® + %(a? — 4cHa? + 4o V7
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Fig. 5. Reconstructed refractive-index profiles corresponding to
the potentials shown in Fig. 4.
where
f(x) =23 + (2¢; — @)x?
+ ((:1,2 + ng - 2062)x - 0(012 + ng). (45)

So it is possible to construct the potential from the
three poles of the reflection coefficient by means of the
above equations. We choose two examples. In example 1,
the poles are determined by the parameters g = 1.0,
1 = 0.8, and ¢z = 0.499; example 2 has different unguided
modes characterized by ¢, = 0.05, ¢, = 0.1, and the same
propagating mode characterized by a = 1.0. Figure 4
shows the plots of the potential functions for examples 1
and 2. In example 2 we see that the potential is negative
everywhere.

Figure § shows the refractive index profiles for the TM
mode in both of the examples discussed above obtained
when one substitutes the potentials into Eq. (31) and solves
for Ve(x). We note that a depressed cladding is obtained
in example 1, and we also see that the profiles that we find

resemble the profiles that we normally find in practical
optical waveguides.*

6. VERIFICATION BY ANALYSIS

To verify the results obtained by inverse-scattering theory,
a finite-difference based analysis scheme is developed
here. We use this method to find the propagation con-

36

stants of the guided TM modes of an optical waveguide
. @2 with an arbitrary refractive-index profile. Owing to its
M2 = [Y%a® + ¢ — ¢, — Y (a® — 4cDVH(a? + de,H)VH2, simplicity and flexibility, this method is proved to be
(43) effective.
We consider a symmetric planar waveguide. For the
Matrix A(x) is given by TM meodes we have®
0 1 0 0 0 0 1
0 0 () aley? + ¢d) 0 0
0 0 0 0 f(n2) ale? + ¢.?) . @)
1 —x exp(—1;x) exp(rx) exp(—;x) exp(1),x)
0 -1  —qrexp(—mx)  miexp(p;x) 7z exp(—ngx) 72 exp(112x)
"% {0 0 1 exp(—1; x) m*expmx) ot exp(—m2x) 2 expli,x)
£
;
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SUBSTRATE
n3

)
Fig. 6. Planar optical wave,

guide showing grid points in the sub-
strate, the film, and the cover.

E,~H,=H =0,

(46)
i
E = (ﬂ) H,, “n
@e
E - _<_J_)8_Hy, -
we/ dx
with the H, component cbeying the wave equation -
3 {1 aH,
22 1R2 — 2 2 .
n ox (nz ax ) [B (x)ko ]Hy(x) . (49)

For the one-dimensional graded-index planarwaveguide,
the refractive index is a function of x, and the wave equa-
tion can be transformed into

d%H, (x)
de

n(x) dx dx
+ [(P*(x)ko* — B*1H,(x) = 0. (50)

If H, and its derivative are single-valued, fihite, and
continuous functions of x, we have the following finite-
difference approximations to the differentials:

d__H o~ mﬂ - fIi—l, ‘ (51)

dx 2k
d’H  Hiy — 2H; + Hiy
dx? [ ' 52)

in which we have used H instead of H, for simplicity. We
have H;., = H(x — k), H; = H(x), and H;,; = H(x + h),
in which k is the distance between the grid points and-{ is
the index of the grid point. We obtain Eq. (563) by substi-
tuting the finite-difference approximation of the first and
the second derivatives of H into Eq. (50):

1 1 dn; 2
(3 + o i+ GRS e

1 1 dn;
+(;L;—;g§x"—)&ﬂ=o, 53) -

in which n; = n(ih) and the value of dn;/dx is the deriva-
tive of the refractive index n at x = ih.

We have chosen three grid points in each region: the
substrate, the film, and the cover, for the purpose of illus-
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tration (see Fig. 6).

For the case considered here the
boundary conditions are
Ho = 0, (54)
Hy=0;

(55)

that is, the field vanishes at the ends of the cladding. Ap
absorbing boundary condition would have been more ap.-
propriate; however, it is not used here.

We can write a finite-difference equation at every grig
point from i = 1toi = 7. We use the function f@) to rep-
resent the derivative of nli) that is obtained again by a
finite-difference approximation and is denoted by

dx (56)

Note that f goes to zero in the substrate and in the cover
region. The refractive indices in the substrate and the

cover are represented by n, and n., respectively. Ati = 1
Hy =0, and so

2
(n.zkoz - Bz - }F)HI + '}"Hz = 0.

7 67
Ati=2,

1 2 1

wt + ,(":2k02 - B*- ﬁ)Hz +taHi=0. (58
In fhe film, at i = 3, }

i 1 A\ 2_ g2 _ 2
[h’ “+ n,(l)h f(l)]Hz + [n (1)k0 ﬁ hz]Hs
1 1
+ [;L—z- - mf(l)]H4 =0. (59)

Ati=4,

h2

1 1
+ [ﬁ—mf(z)]Hs = 0.

1 1
[+ o+ [ - - e

(60)
Ati =5,

1 1
[Ez' + mf(3)]H¢ + [n2(3)k02 - 32 - ;LZ'Z‘]H5
1 1
—_— = 61
* [hz n@h! (3)]H° 0. @V

1

’}?Hs + {nczkoz bt ﬁz - %]Hs + ;zleH? = 0, (62)

At i = 7, since Hy = 0, we have

1
FHG + (nczkoz -g*- %)H-, =0. (63

For convenience, we can rewrite these finite-difference
equations as a matrix equation:
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0 0 W -le
0 0 H,
0 0 H;
0 0 H| =0, (64
Qg5 0 H5
Qes — 52 Qg7 Hg
Qg an — B? LH7

au — B ap 0 0 0
an az — B2 Qg3 0 0
0 Q32 a3z — ﬁz [+ 37} 0
AH = 0 0 aga au —~ B* Qs
0 0 0 QApy Qgs — 32
0 0 0 0 Qes
] 0 0 0 0 0
in which the elements of matrix A are defined bj
ayg = '—'% + nzzkoz = ANN, (65)
L 6
Q12 = 43 = ANN-1, (66)

~4

and, for2 =i < N

% 2=i=N, Ni+N,<i<N
Qi i-1 = 3 . ]
1 f@) .
=+ — <i=N{+ N,
2 hpr M<isNN
67
% 2=<i=N, N+ Ny<i<N
Qi iv1l = 9 . ’
’ 1 f@ . -
- Ni<i= N; +N.
B a@r TS PEMTN
(68)
flzzkoz—ﬁ,-' 2SiSN1, N1+N2<i<N
Q= - 2
nz(i)koz—‘}:.z Nx<iSNx+N2
| .

(69)
f(@) is the derivative of the refractive index at x = ih; N,
N, and N; are the number of grid points in the substrate,
the film, and the cover, respectively; and N = N; + N, +
Nj is the total number of grid points. The other elements
of the matrix that are not defined above are Zeros.

The matrix A can now be split into
A=B - g%,

where I is the identity
following simple form:

(70)
matrix and the matrix B has the

1 X

(e az 0 0 0
21 Q22 QAa 0 0

0 aw ax ay, O

coc oo
o 0 OO

B = 0 0 a3 Ay aus (71)
0 0 0 asi ags agg O
0 0 0 0 ae ae ae
0 0 0 0 0 Qs Qg
L d
Equation (64) can now be rewritten in the form
B - 8*IH = 0. (72)

To find the propagation constants of the guided TM
modes, we must solve the eigenvalue problem of Eq. (72),
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which has a nontrivial solution if and only if 82 are eigen-
values of B. So, finally, we have ’

{8} = Veig(B] (73)

for both odd and even modes. For the TE modes the situ-

ation is much easier, since the wave equation has a simpler

form than that for the TM modes. The field component E,
obeys the wave equation®

3’E,(x)

? = [Bz - nz(x)kOZ]E,(x). (74)

We can find a matrix expression similar to the one we

found for the TM modes. In the TE case we need not

calculate the derivative of the refractive-index profile.

For the given refractive-index profile distribution
n = n(x) the matrix B can be constructed and the propa-
gation constants {g} can be obtained by solving for the
eigenvalues of this matrix.

Before we attempt to
files obtained by the
theory,

analyze the refractive-index pro-
application of inverse-scattering
we would like to see whether the finite-difference
technique developed here provides the right result. To do
that, we have applied the technique to various refractive-
index profiles, such as parabolic and Gaussian, for which
results are already available in the literature.’> The re-
sults corresponding to TM modes are given in Tables 1
and 2 and show that our analysis technique is accurate
and powerful. _ ‘

Having established the accuracy of the finite-difference
technique, now we can use this technique on the arbitrary
refractive-index profiles that we have obtained. Figure 7

shows the dispersion characteristics for the refractive-
index profile with the single symmetric peak shown in

Fig. 3. The normalized frequency V has heen determined
fr

om the waveguide thickness and the free-space wave-
length of the propagating modes. Here we have V —
kodVn? — n? = 376883. The normalized propagation
constant that we used here is defined by

2 2

b= A -2, (79
ny — ng

Here n; is the refractive index of the cladding and n, is the
maximum refractive index of the core. The number of
TM modes present is the same number that we started
with in reconstructing the profile. When analyzed, the
refractive-index profiles corresponding to the nonzero re-
flection coefficient, as shown in Fig. 5, yield the dispersion
characteristics shown in Fig. 8. Again we see the consis-
tency in the number of modes obtained by analysis and
the number of modes used in the synthesis of the profile.
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Table 1. Mode Spectra 8,/k, (TM) of Symmetric
Truncated Parabolic Index Profile of A, *-Diffused

Waveguide with n; = 1.6125, n, = 1.5991,
A = 0.6328 pm, and Thickness d = 9.1400 um
Mode

Number  8,/ko from By/kq from Finite-Difference Method
y) Ref. 12 N, = 84° N, = 168°
0 1.5966 1.5966 1.5966
1 1.5915 1.5915 1.5915
2 1.5864 1.5864 1.5864
3 1.5813 1.5813 1.5813
4 1.5762 1.5762 . 1.5762
5 1.5711 1.5711 15711
6 1.5659 1.5658 1.5659
T 1.5607 - 1.5604 1.5605
8 1.5556 1.5546 1.5548
9 1.5503 1.5498 1.5499
10 1.5451 1.54397 1.5443
11 1.5399 1.5387 1.56390
12 1.5346 1.56326 1.5336
13 1.5294 1.5288 1.5290
14 1.5241 1.5228 1.5231
15 1.5188 1.5139 1.5143

“N3 is the number grid points in the core.

Table 2. Mode Spectra B,/kq (TM) of Symmetric
Truncated Gaussian Index Profile of A, *-Diffused
Waveguide with ny = 1.5125, n, = 1.6014,

A = 0.6328 pum, and Thickness d = 9.1700 um

Mode

Number  B,/kqfrom  By/ke from Finite-Difference Method

» Ref. 12 N, = 84° N = 168°

0 1.5984 1.5984 15984

1 1.5925 1.5925 1.5925

2 1.5867 1.5868 1.5867

3 1.5811 1.5812 1.5811

4 1.5756 1.5757 1.5757

5 1.5702 1.5704 1.5703

6 1.5649 1.5651 1.5650

7 1.5596 1.5598 1.5596

8 1.5545 1.5542 1.5544

9 1.5494 1.5487 1.5490
10 1.5444 1.5424 1.5431
11 1.5395 1.5387 1.5390
12 1.5347 1.5341 1.5341
13 1.5297 1.5283 1.5284
14 1.5251 1.5220 1.5222
15 1.5204 1.5192 1.5195

“Ny is the number grid points in the core. e

Though we have shown that the number of modes is cor-
rect, this is not sufficient proof that the reconstructed
refractive-index profiles have the same propagation con-
stants for each of the specified modes. To check this, we
have compared the propagation constants of various modes
that we used in reconstructing the refractive-index profile
of the waveguide with the propagation constants obtained
by analysis for the normalized frequency at which the
propagation constants are prescribed. The results are
shown in Table 3, and the last two columns of the table
agree well. This shows that the inverse technique out-

lined here can be used to synthesize waveguides with pre-
scribed TM modes.
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7. DISCUSSION AND CONCLUSIONS

We have developed a method based on inverse-scattering
theory that can be used to design planar optical wave-
guides that transmit a prescribed number of TM modes
with prescribed propagation constants. The results have
been verified by means of finite-difference analysis. This
procedure, in conjunction with the technique for design-
ing planar optical waveguides for prescribed TE modes
developed in Refs. 4 and 5, provides the complete inverse-
scattering procedure for designing planar optical wave-
guides with prescribed propagation characteristics.
However, it should be mentioned that only the character-
istics of one kind of mode (TE or TM) can be prescribed
in a waveguide, as the two kinds of mode are governed by
two different differential equations. :

One important question that should be answered when
we fabricate actual waveguides with refractive-index pro-
files obtained with the technique described here is with
what precision the n(x) should be fabricated to provide the
desired mode configuration. To answer this question we
have changed V(x) [V(x) is related to n(x) through Eq. (30)]
uniformly over the spatial distance x by 1%, 5%, and 10%

Normalized propagation constant b

Normalized Frequency V

Fig. 7. Dispersion characteristics of the reconstructed refractive-
index profile shown as the solid curve in Fig. 3.
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03t
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0 1 2
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Fig. 8. Dispersion characteristics of the reconstructed refractive-
index profiles shown in Fig. 5.
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Table 3. Prescribed TM Mode Spectra Used in Reconstructing Refractive Index of Planar Waveguide and
Spectra Obtained by Authors

Number of Modes (N) Mode Number (y) Prescribed Mode Spectra B,/ko By/kq Obtained by Our Analysis
1 0 2.18997 2.18995
2 0 2.20556 2.20553
1 2.18417 2.18398
3 0 2.20926 2.20916
1 2.19140 2.19100
2 2.18061 2.18036
33 0 2.21288 2.21266
1 2.20003 2.19968
2 2.18998 2.18968
3 2.18278 2.18254
4 2.17845 2.17797
7 0 . 2.21466 2.21452
o 2.20473 2.20449
2 2.19630 2.19606
3 2.18927 2.18915
4 2.18397 2.18379
.5 2.18010 2.17997
6 2.17718 2.17763
Table 4. Change in Propagation Constant from Uniform Change in V(x) Along x
' } Effective Index (8/ko) Obtained by Our Analysis
AV (x) AV (x) AV (x) AV (x)
- — 1% - 5% — -
Prescribed Effective Index (8/k) Vix) Vix) Vix) V(x) 10%
2.18997 2.18995 2.18998 2.19016 2.19024
221 — profiles. Figure 10 shows the variation in the shape of
- the refractive index as a function of changes in the choice
22051 : f//\ 1 of the constants {A.|n =1,2,...N}. Our inference is
J/ & that the shape is not highly sensitive to the changes in the
22r J 1 constants A,.
g The technique developed here may find application in
£ 2195¢ the design of waveguiding structures for the spatial trans-
2 15 1 mission of images and for optical interconnections.
E
2.185} 1 226
218k | 2.25
224
M1 %5 0 o5 1 15 2

x (um)
Fig. 9. Refractive-index profile corresponding to a uniform
change in V(x) along x. The original profile corresponds to the

solid curve. Uniform changes of 1%, 5%, and 10% correspond to
the dashed, dotted, and dashed-dotted curves, respectively.

and have computed the corresponding change in the propa-
gation constants for a typical single-mode profile. Fig-
ure 9 is a plot of a refractive-index profile corresponding to
a uniform change in V(x) along x, and Table 4 provides the
computed results of changes in the propagation constant g8
due to the uniform change in V(x) alongx. We see that a
change in AV/V in the range of 1-5% does not significantly
affect the mode characteristics of the waveguide.

It is also important to analyze the effect of the arbitrary
constants A, on the shape of the resultant refractive-index
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Fig. 10. Refractive-index profile (five modes) with change of val-

ues for the constants A,. A, satisfying Eq. (36) is shown by the

solid curve. An increase of Ay, Az, and A, by 10% and a decrease

of A  and As by 10% is shown by the dashed curve. A decrease of

A,, Az, and A; by 10% and an increase of A, and As by 10% is
shown by the dotted curve.
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Gradient-index planar optical waveguides with exponential and sech® x refractive-index profiles are analyzed.
By using a scattering framework, reflection and transmission coefficients for the infinite exponential profile
are derived, and these scattering data are analyzed to obtain mode propagation constants and describe the ef-
fects of varying the height of the refractive-index profile. The theory is then developed to account for trunca-
tions of refractive-index profiles, the effects of a finite core width on the propagation constants for sech? x
potentials are illustrated, the behavior of the bound modes in response to variations in the width of the wave-
guide core is described, and the appearance of leaky modes for the truncated structure is discussed.

1. INTRODUCTION

Planar dielectric waveguides are the basic structures in
guided-wave photonic components and photonic integrated
circuitry. Most of the processes used for fabricating di-
electric waveguides, the diffusion and ion implantation
techniques in particular, lead to dielectric-waveguide
layers whose refractive indices vary gradually over the
cross section. In many applications such graded-index
profiles have advantages over their step-index counter-
parts. The index may be graded to reduce multimode dis-
persion' or designed to provide a larger core width,
allowing for stronger confinement of the fundamental
guided mode.? In turn, the refractive-index profile and
the core width significantly affect the spectrum of propa-
gation constants.>*

The analysis of planar optical devices with gradient
refractive-index profiles can be carried out by using a
number of standard methods. When analytic or semiana-
lytic techniques are used, the method employed will de-
pend on whether the effects being studied are merely
perturbations of a waveguide with known solutions or are
stronger variations that require new solutions. A limited
number of refractive-index profiles, such as the parabolic,
exponential, and hyperbolic-secant types, allow for exact
analytic solutions when they are considered infinite in
extent, but analyzing the effect of a finite core width,
which is a necessary part of any practical design, requires
more elaborate techniques.

In this paper, efficient, exact analysis of the effects of
altering parameters related to the waveguide geometry is
carried out by analyzing the transmission coefficient of
two waveguide structures. First, we consider the effects
of varying the depth of an infinitely wide exponential pro-
file, and, after formulating the transmission coefficient of
a truncated structure, we apply a similar analysis to exam-
ine the effects of a finite core width on the mode structure
of a truncated sech® x profile. In both cases we study the
phase of the transmission coefficient to determine the
number of bound modes, and it is shown that the imagi-
nary part of the transmission coefficient provides useful
information regarding critical parameters of the wave-

0740-3232/92/101763-10$05.00
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guide (depth of the refractive index, core width) at the
mode cutoff points.

2. PLANAR-WAVEGUIDE THEORY

Consider the planar graded-index waveguide consisting of
an inhomogeneous core with a varying refractive index
n(x) surrounded by two cladding layers of constant refrac-
tive index n; as shown in Fig. 1. This structure supports

electromagnetic fields governed by the vector wave
equations

. 2 2 2
wm[E.M]-ﬂge_E:o, @

n’(x) c?  at?
1 *(x) 3*H
VH + — Vo) X (V x H) - ”C(Zx) T=0, @

in which E and H are the electric and magnetic fields,
respectively, the refractive-index profile n(x) is a function
of only the x coordinate, and ¢ is the velocity of light in

free space. The waveguide supports TE and TM modes
that are assumed to have the form

E,(x,z,t) = E /(x)exp(iBz)exp(—iwt) (TE), 3)

E.(x,z,t) = E.(x)exp(iBz)exp(—iwt) (TM), (4)

where z is the direction of propagation, w is the frequency,
and B is the longitudinal propagation constant. It has
been assumed that the waveguide is infinite in extent
along the y axis, reducing the vector wave equations to®

d’E, d 1 dn¥(x)
a2 | dx I:nz(x) dx E,(x)]
+ [kotn®(x) — B2lE.(x) = 0 (TM), (5)
d’E
dey + {ko?n¥x) — BYE, =0 (TE). (6)

Here k4 is the free-space wave number. The equation for
the TE field takes the form of a Schrédinger equation,
which is particularly well suited to analysis using scatter-

© 1992 Optical Society of America
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CLADDING
N2
CORE
n(x)
:n(x)
L
._.1" ___n,
] x
X Xz

Fig. 1. Planar dielectric waveguide consisting of a core with
graded refractive index surrounded by a cladding with constant
refractive index.

ing data; for the purposes of this paper attention will be
confined to the TE modal fields described by Eq. (6).

Defining the complex transverse propagation constant
k(=k, + ik) as

kZ — k02n22 —- B2 (7)
brings Eq. (6) into the form
d’E
7+ [F ~ v@)E, = 0, @®)
whose potential
v(x) = ko'[n® — n*(x)] )

varies across the waveguide core and vanishes in the
cladding. Equation (9) clearly illustrates how the depth
of the potential may be varied by changing the wave-
length, altering the refractive-index profile, or both. In
this scheme the mode cutoff condition, B = kons, is ob-
tained when

k=0. (10)
The discrete set of guided modes characterized by kony <
B < kon,, or, equivalently, by 0 <Im &k < Im{ko(n,® —
n,5)'%], is represented by points along the positive imagi-
nary axis of the complex % plane. In scattering theory the
guided modes are termed bound states and are distin-
guished by their discrete eigenvalues k.

3. MODELING BY SCATTERING
COEFFICIENTS

A. Scattering Coefficients and Jost Solutions

The potentials considered here satisfy the Faddeev
condition®

J m(l + ) u(x)dx < e,

Y

(1)
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which is valid for well-behaved nonsingular potentials,
which are suitable for use as refractive-index profiles, in-
cluding truncated potentials. In effect, this condition
dictates that v(x) should fall off at infinity at least as fast
as 1/x?*¢ for any positive definite e. This implies, as a
weaker condition,

lim v(x) — 0, x — *toq, (12)
A plane wave exp(+ikx) incident upon the potential from
x = — o will give rise to a reflected portion taking
the form
r_(k)exp(—ikx) (13)
as x — — o as well as to a transmitted wave
t_(k)exp(+ikx) 14)

as x — o (see Fig. 2).7 An alternative (but equivalent)
viewpoint is provided by the coefficients r+(k) and t.(k)
shown in the same figure.

The Schrodinger equation admits a pair of Jost solu-
tions, denoted f.(k,x) and f_(k, x), defined according to
their asymptotic behavior: :

lix}}: folk, x)exp(—ikx) = lirfl f-(k, x)exp(+ikx) = 1.
15

The pairs {f+(k,x), f+(—k,x)} and {f-(k,x), [-(—k,x)}
comprise sets of linearly independent solutions to the

Schradinger equation, permitting construction of the lin-
ear combinations

folk,x) = alk)f-(—k,x) + bR)f-(k, %),

folk,x) = c(B)fo(=k,x) + d(R)f.(k, x). (16)
Matching the solutions at arbitrary x provides
to(k)f=(k, x) = fol—k,x) + re(R)fs(k,x). amn
Comparing Egs. (16) and (17) gives
1 _r-(k)
a(k) = t_(k)’ b(k) = t_(k)’
1 _rlk)
B=rw P i 18

Equations (16) generate a set of four consistency relations
among the coefficients. The first two,

a(k)e(—k) + b(k)d(k) = 1,
alk)d(—k) + b(k)c(R) =0,

e tikx
—_ r_(k)e"""‘

°—-f+(k)e'ikx

19

t_(k)e +ikx

e—ikx}

Fig. 2. Scattering by an arbitrary potential v(x): plane waves
from x = * = produce the scattering data ro(k), - (k).

rf(k)e““"‘

— e e e
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arise when the second of Eqs. (16) is substituted into the
first. The reverse substitution gives

c(k)a(—k) + d(R)b(k) = 1,
c(k)b(—k) + d(k)a(k) = 0. (20)

The Wronskian, defined as W[ £, gl = fg' — gf" (the prime
denoting differentiation with respect to the coordinate),
provides a set of relations

2ik 2ik
t_(k) - t.(k) = W[f-(&, x), f+(k, x)] 1

so that t.(k) = ¢, (k) = t(k), aresult thatis a direct conse-
quence of the asymptotic behavior stipulated in rela-

tion (12). In addition,
., r<(k) o _
2k PE FWIfz(k, x), fo(—F, x)] 22)

follows from Egs. (16) and (21).

B. Guided Modes

For guided modes the Jost solutions reduce to the bound-
state wave functions. For bound states one seeks the
asymptotic behavior

E,>**(x) ~ exp(F«x), x -t

>0, (293

a condition satisfied by the Jost solutions when they are
proportional, i.e., where the Wronskian [Eq. (21)] vanishes.
This occurs [see Egs. (16)] at values of k(=ix) such that

1
t(k)

that is, the bound-state eigenvalues correspond to the
poles of ¢(k) that lie upon the positive Im % axis. The Jost
solutions are related by

f+Gx, x) = blin) f-(ix, x),

f-(ix, x) = d(ix) i (ix, x) . 25)
The consistency relation, Egs. (19), takes the form
b(ix)d(ik) = 1. (26)
The corresponding normalized fields are then
E (%) = ¢ filik, x) = c-f_(ix, x), @7
where
c_ = ¢.b(ix), ¢y = c_d(ix). (28)

C. Leaky Modes

A discrete set of poles representing leaky modes is in gen-
eral present in the lower half of the complex & plane. In
the ray picture the guided modes of Subsection 3.B corre-
spond to rays that are trapped in the guide by total inter-
nal reflection. The refracting leaky modes, on the other
hand, correspond to quasi-trapped rays that proceed along
the waveguide, outside the critical angle for total internal
reflection but nonetheless persisting for some distance
along the guide, since only a fraction of their power leaks
away each time the ray is refracted at the core—cladding

=0; . (24)
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interface.® Close to the source the leaky modes represent
a significant fraction of the launched field. At large dis-
tances along the waveguide their contribution is signifi-
cantly reduced, decaying exponentially at a rate that is
dependent on the refractive-index profile® In scattering
terminology these are referred to as resonant states.
Consider a pole in the lower half of the complex plane,

k=p +ip; (p;<0). (29)

Inverting Eq. (7) for the propagation constant B, one
obtains

B = [k’ns® + p* — p,* — i(2p,p)] % = B+ iB:;, (30)
so that the leaky-mode field [Eq. (3)] takes the form
E(x,z) = E,(x)exp(—B:z)exp(iB,z). (31)

According to Eq. (30), the rate of decay is a function of
both p, and p;. In general, g; > 0, and so the field in
Eq. (31) represents a decaying wave propagating in the
positive z direction.

The leaky modes, as they apply here, are a direct conse-
quence of truncating the refractive-index profile by in-
troducing core-cladding interfaces that act as refracting
boundaries. They will be reconsidered in Subsection 4.C,
following the discussion of truncation.

Figure 3 summarizes the pole positions for a typical
waveguide potential. Included are the bound states along
the positive Im % axis, the complex lower-k-plane poles

representing leaky modes, and poles along the negative
Im % axis.

D. Waveguide Properties from Reflection and
Transmission Coefficients

For the cases considered in this paper t(k) is devoid of
zeros on the upper half-plane and exhibits only simple
poles (see Ref. 10). Levinson™ observed (for the halfline)
that the number of bound states N can be ascertained by
analyzing the phase of the transmission coefficient. This
can be extended to the full line, as considered here (see
Ref. 10). Consider the contour integral

1 f =L [ zdeydr X
Qi cdh‘ t(k)"zm' c  tk) dk",,%”"_N’

(32)

where C is a closed counterclockwise contour enclosing all
the N simple poles of £(k) in the upper half-plane. Equa-

Im k
3

propagating modes

Re &

x x x XX

X x
X
X X ™~ Xxxx

leaky modes

Fig. 3. General arrangement of poles in the complex £ plane.
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v(x)(AU)
x{AU)

o]

Vo (<0)

Fig. 4. Exponential potential.

tion (32) is a direct application of the argument prin-
ciple,'? where we have denoted the order of the pth pole by
pp(pp, =1 for simple poles). Let us consider the integral
along the various segments of the contour consisting of a
line from —R to —¢, a semicircle, denoted Cj, of radius e
enclosing the origin {to allow for cases, such as truncated
potentials, in which ¢(k) has a zero at the origin], another
line from +¢ to +R, and a semicircular arc of radius R,
denoted C;. Taking the limits R —> « and € — 0 gives

R—x<,e—0

. 1 e
I= lim _é—w—i{f_nd In[t(R)] + le In[¢(k)]

R
+ f dIn[eG)] + | d ln[t(k)]}- (33)
+e Cy

After the integration and the substitution of the polar
form for the transmission coefficient (k) = |¢(k)]
explip(k)], Eq. (33) reduces to the desired relation between
the phase change and the number of bound states:

N = lg(- o) — d(+ ). 34)
T

This result follows directly from the fact that, if the poten-
tial is a member of the Faddeev class (the case under con-
sideration), then 1/f(k) — 1 ~ 1/k and [dt(k)/dR]/t(k) ~
1/k? as k — =, and therefore the integral over the infinite
semicircle vanishes. The application of Levinson’s theo-
rem will be taken up in Subsection 3.F following a deriva-

tion of the scattering data for the infinite-exponential
potential.

E. Reflection and Transmission
Coefficients: Infinite-Exponential Profile
The exponential profile is generated by a potential of

the form?!®
v(x) = vy exp(—|x]), » (35)

as shown in Fig. 4. We assume vy < 0.

Solutions to the Schridinger equation will provide the
exact form of r.(k) and ¢.(k) as well as the Jost solutions
for the infinite-exponential profile. If the constant a =
2(—vp)'?, the substitution

i = aexp(—x/2) (x>0,
u = a exp(x/2) (x <0) (36)

D. W. Mills and L. S. Tamil

brings the Schrodinger equaﬁion into the form of Bessel’s
equation:

ZE o Y
d y+l%+[l—(2"4]Ey=0.
u

du?  u du (37)

To identify the reflection and transmission coefficients
we seek solutions with the asymptotic forms

ti.(k)exp(—ikx), X —> —oo,
exp(—ikx) + r.(R)exp(—ikx), x— +o. (38)

By defining the constant v = 2ik, one can write well-
behaved solutions of Eq. (37) as linear combinations of
Bessel functions J.,(«), whose behavior as x — * ® is rep-
resented by the small-argument approximation

Jo () =~ é;%(ui)m (39)
Consider solutions of the form
Cod_ ) + C3d,(w), x>0,
CJ_(w), x<0, (40

with the appropriate form of u selected for each region.
The requirement that these solutions and their first

derivatives be continuous at x = 0 provides a set of two
equations:

Cid_(a) — Cyd_,(a) = Csd (a),
Cid_ @) + Cod_ (@) = C3d (a), 41

where a dot indicates a derivative with respect to the ar-
gument. The constant Cy can be evaluated if we define
the k-dependent coefficients

a: 2ik

Ae = —pe———
2= 290k + 1)

42)

and reduce expressions (40) to the form
CoA_ exp(ikx) + CiA, exp(—ikx), x —>0,
CiA_ exp(—ikx), x— -, (43)

and comparison with expressions (38) indicates

Cg/\+ = 1,
t.(k) = CA_,
rio(k) = CoA_. (44)

Equations (41) may be solved for the remaining two con-
stants, so that

2270 T + 1) Ja)d_ (@) — J @)d-(a)

t (k) = - 45
W = T S T D JADI @) (#5)
) = =2 T+ 1) J@)d_Ja) + J(a)J_(a)
* a® T(-v + 1) 2J_(a)J_,(a)
(46)

where it is emphasized that the k dependence of the coef-
ficients enters through the constant v. The numerator of
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0.4

0.3
Jy ()
0.2

Fig. 5. Eigenvalues «;, ..., for the exponential potential; vy =
—7.7. The highest state («;) is barely supported at this depth.

Im t(ke)

0.5

Re t(k¢)

0.5 1

Fig. 6. Count of the bound states provided by the parametric
plot of the phase of the £(k), shown here as k, proceeds from —o to
+, indicating two bound states for v, = —3 (exponential profile).

the transmission coefficient remains finite for positive
Im %, leaving the propagation constants for the even and
odd modes to be determined by the zeros of the Bessel
function and of its derivative.’* Figure 5 illustrates these
functions for v, = —7.7, showing four bound states.

E Analysis of the Exponential Profile

For the case of the infinite untruncated exponential po-
tential, it is clear that the amplitude vy controls the num-
ber of bound states. Consider the parametric plot in
Fig. 6, which shows Im ¢(k,) (vertical axis) versus Re t(%,)
for k, € (—o, +®). The value of v, is —3. At the lower
limit of &, we have Im ¢(k,) — 0, Re £(k,) — 1, and the
plot proceeds into the fourth quadrant as k, increases. As
k. — 0 the phase ¢(k) has swept out one cycle of 27. Sub-
sequently, another cycle is traversed, indicating the pres-
ence of two bound states according the discussion in
Subsection 3.D. In Fig. 7 a similar plot is shown for vg =
—0.75, indicating a single bound state.

Comparison of Figs. 6 and 7 indicates that Im #(k,)
contains important information regarding the number of
bound states. Along the Re k axis, Im £(k; vo) is an odd
function (for emphasis, the vy dependence is shown explic-
itly) whose typical form is shown in Fig. 8. The number
of zero crossings depends on the number of modes; as v, is
reduced, the zero crossings move toward the origin. As a
mode is squeezed out, a pair of these zero crossings con-

Vol. 9, No. 10/October 1992/J. Opt. Soc. Am. A 1773

verges, causing a rapid variation of Im ¢(k,) in the vicinity
of the origin. According to Fig. 8, the exponential profile
becomes single mode for values of |vo] < 1.446. The tran-
sition from four modes to three occurs at vy = -7.62,
which is consistent with Fig. 5.

It is also evident that the slope of Im[£(k,; vg)[4 ~o under-
goes a change in sign as a mode is lost; however, calculat-
ing the derivative results in longer run times than does
the approximation illustrated in Fig. 9, which shows the
variation of Im ¢(k,, vo)|s ~-10-5 as a function of vy. Criti-
cal values of vy, where modes are created or destroyed, are
indicated by the zero crossings of this function.

Strictly speaking, this tool is an approximation, but it is
extremely reliable for small values of |k,|. Little variation
in the critical values is found for &, < 107%; however, the
inflection points proximal to the zero crossings become
more pronounced as &, is reduced. In general, one can be
confident that a good approximation is being obtained if
the plot is nearly vertical in the region between the two
inflection points. The illusion of a singularity in the
vicinity of the critical values is an artifact of the plotting
process; the inset in Fig. 9 is representative of the true
behavior near these points.

Depth of the potential is just one parameter controlling
the number of bound states. If the potential has compact
support, i.e., if v(x) is nonzero only in a finite interval, the

Im t{ke)

075

0.25

Re t(k,)

o8

Fig. 7. Parametric plot for k, € [—w, +®], indicating single-
mode operation at vy = —0.75 (exponential profile).

Imtk,)
075
+0.5

0.2

-0.25

-0.5

-075

-1.0

Fig. 8. Imaginary part of the transmission coefficient for three
values of vg, indicating the effects of reducing the depth of the
potential (exponential profile).




1774 J. Opt. Soc. Am. A/Vol. 9, No. 10/October 1992

D. W Mills and L. S. Tamil

=15
r=
+0.0075
+0.0050
Vo | 10.0025
-l7:5 -IS;O ~-12.15 =71.5 -5.0
-10.0 —2:5 7 1
1-0.0025
H-0.0050
+-0.0075
04
0.2
Py
-0.2
-04

Fig. 9. Critical values of vy represented by zero crossings. Inset shows detail at vy = —1.445 (exponential pr-of ile).

number of bound states will be dictated by the width of the
potential as well as its depth. In Section 4, we discuss
truncated potentials and examine the effects of a finite
width on the mode structure.

4. TRUNCATION OF REFRACTIVE-INDEX
PROFILES

A. General Theory

For the purposes of this paper truncation consists of
slicing a potential, such as the one illustrated in Fig. 10
(where the truncations are indicated by dashed lines),
thereby creating an accurate model of a guided-wave
structure. The region x; < x < x; constitutes the core.
Truncating the potential to zero in the regions x < x; and
X = x, creates two cladding regions, each with refractive
index n;. Note that the only restriction on x;, x, is that
x > xy; each may take on positive or negative values, per-
mitting a large degree of flexibility in the resulting core-
refractive-index profiles.

In this section a general formulation of the truncation
problem® is derived, providing an expression for the trans-
mission coefficient of a doubly truncated potential. In
the procedure considered here this transmission coeffi-
cient will be written in terms of the Jost solutions corre-
sponding to the original untruncated (baseline) structure.

A notable restriction is that the Jost solutions for the base-
line structure must be known a priori.

Note that the process of truncation creates three dis-
tinct regions separated by two discontinuities, one each at
the points x; and x,. The requirements of continuity of
the Jost solutions and their derivatives at these points can

v(x)
A

Fig. 10. Truncated potential v(x) corresponding to waveguide
structure with core—cladding interfaces. o(x) = —2 sech’ x; x,
and x, are the truncation points.

48
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be imposed to formulate the transmission coefficient of
the doubly truncated structure, which can subsequently be
analyzed for the presence of propagating and leaky modes.
The integral form of the Jost solutions,'®

sin k(x — 2)

A v(z) fe(k, 2"Nd2’'

f-lk, x) = exp(xikx) F j
“n

{where the limits on the integral are [~, x] and [x, ] for
f-(k,x) and f,(k, x), respectively}, combined with the re-
quirements of continuity, provide the necessary equations.
It is sufficient to consider continuity of either f.(%, x) or
f-(k, x); if the latter is selected, note that in each region
the Jost solution for the doubly truncated potential can be
written as follows:
For the cladding (x < x,),

f-TT(k, x) = exp(—ikx), (48)
and for the cladding (x > x3),

Tk, x) = cTT(k)exp(—ikx) + dTT(k)exp(ikx), (49)

which is a form of Eq. (17).
For the core (x; < x < x3),

[Tk, x) = fT(k, x) = T(RI"(—k, x) + dT(R)f,°(k, x).
(50)

The notation f.%(k, x) has been used to denote the Jost so-
lutions for the untruncated (baseline) potential. The ori-
gin of Eq. (50} is as follows. Implicit in the integral form
of the Jost solutions is the observation that the form of
the Jost solution f-T7(k,x) in the core is unaffected by
the truncation at point x,; hence the first equality in
Eq. (60). (The single superscript T indicates quantities
associated with a potential that is truncated only at
point x;.) The linear combination in Eq. (50) follows from
Egs. (16) and the equivalence f.T(k, x) = f.%(k, x) in the
region x > x,.

Imposing the requirements of continuity of f.T7(%, x)
and its derivative at point x,, one obtains an equation
for ¢TT(k):

1 exp(kxy)

TT(LY = —
o B =y 2ik

(- F-TCk, xo) + ikfT(R, x,)].
(61

Likewise, the coefficients cT(k), dT(k) follow from the
boundary conditions at x = x;:

cT(k) = ei‘i;—;kf‘ﬁ[fm'(k,xo + ikfOk, )], (52)
T —exp(—ikx)) ., - LF 0
a7y = “EEC R £k, w) + iRk, 2] (59)

When substituted into Eq. (50), these coefficients yield an
expression for the transmission coefficient of the double
truncated structure,

tTT(R) = —4k® expl—ik(x, — x)1(fafs — ff)7, . (54)
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where

fo = [Ok, xy) + iRfO(R, x1),

fi= — =k, x9) + ikf(—k, x5),

fo ==k, x1) + ikf %~k x1),

fa= = [, x2) + ikf0k, x2). (55)

The transmission coefficient is now written in terms of
the Jost solutions for the original potential and known
constants related to the width of the potential. It is par-
ticularly interesting that the requirements of continuity
provide relations [Egs. (52) and (53)] that are nothing
more than the Wronskians given by Egs. (21) and (22). In
Ref. 10, where singly truncated structures are treated,
the Wronskians are used at the starting point of the
analysis; that approach is completely consistent with the
(physically more intuitive) continuity requirement im-
posed here.

B. Truncation of v(x) = —2 sech® x (Single Mode)

In general, the width of the waveguide is controlled by the
parameters x; and x,. As these are varied, causing a
change in the core width, the poles of £TT(k) move in the
complex k plane. As an example, consider truncation of
the baseline potential v(x) = —2 sech® x according to the
procedure indicated in Subsection 4.A. The baseline Jost
solutions take the form®

£0(k, x) = exp(:ikx)(l—}f—i':;ti“—;”c)- (56)
Therefore
) 2 - - 3
gy < GRE = DG+ D) -

P(k, X1, x2)
where the denominator is a function of k:
plk, x4, x5) = (2% + 2ik tanh x, + sech® x,)
X (2k% — 2ik tanh x, + sech? x,)
— exp[2ik(x; — x;)]sech? x,; sech®x,, (58)

whose zeros identify the poles of £¥7(k). In this form it
is clear that p(k, x;, x;) is not a polynomial in k unless

fx1] or |x,| approaches infinity. Two examples are con-
sidered below.

1. Casei: x, Variable; x, — ®
The example of case i provides analytic solutions for the
pole positions, given by the roots of the equation

2k%* + 2ik tanh x; + sech?x, = 0, (59)

resulting in two poles k. = ix., one each on the upper and
lower Im % axes:

x. = Y[—tanh x; = (1 + sech? x,)'?], (60)

which are shown in Fig. 11. Note that «; — 0 only in the
limit of a vanishing waveguide, indicating that the fun-
damental mode has zero cutoff in a planar waveguide with
symmetric cladding indices and always propagates.
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Imk
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-4 -? 4 X,
— ‘l\ T T
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\
3 Xl
N
-4~ ~ — e ——— ——

Fig. 11. Variation of the pole corresponding to the propagating
mode (solid curve) as a function of truncation point x;. The
emergence of a pole corresponding to a leaky mode (dashed curve)

is also shown here as a function of truncation point. wu(x) =
—2 sech® x.

Imk
o8+
0.6+
04+
0.2+

- 0B -06 -04 -02 Xy
Fig. 12. Variation of pole position representing the propagating
mode as the core width is narrowed for x2 = —x; and v(x) =
-2 sech? x.
Imk
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Fig. 13. Emergence of a pole on the lower Im £ axis as a func-
tion of truncation point x;. - v(x) = —2 sech? x.
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2. Caseii: x, = —x; (both variable)

In the example of case ii the core is progressively narrowed
in a symmetric fashion about x = . Figures 12 and 13
illustrate the motion of the poles as x, varies. Figure 12
illustrates that, as in the previous example, the bound
state is always present. The pole on the lower Im £ axis,

shown in Fig. 13, moves down the axis as the waveguide is
narrowed.

C. Truncation of v(x) = ~N(N + 1)sech? x (Multimode)

The two-mode (k; = 1,k, = 2) member of the family of
sech® x potentials,

v(x) = —6 sech®x, (61)

can be analyzed in a similar manner. When the Jost so-
lutions for the above potential,'®

1+ k% + 3ik tanh x — 3 tanh?x
k + D)k + 20)

f:%k, x) = exp(*ikx)

(62)

are substituted into Eq. (54), the resulting transmission
coefficient yields two poles that appear on the upper
Im % axis. For the case of a symmetric truncation
(xz = —x;) they exhibit the behavior illustrated in Fig. 14.
A fundamental mode, which propagates for all waveguide
widths, is characterized by values of Kk, that range from 2
(for an infinitely wide waveguide) to 0;. the latter is ob-
tained when the waveguide disappears (at x, = —~x; = 0).
A higher-order mode characterized by «i begins at unity
and becomes progressively less tightly bound as the wave-
guide is narrowed, until x, = —0.73 (i.e., a waveguide
width of 1.46), when the mode reaches cutoff and Ky pro-
ceeds onto the lower Im £ axis, as shown.

In this example the core width is the geometrical vari-
able controlling the number of propagating modes.
Parametric plots given in Figs. 15 and 16 (analogous to
those for the exponential profile) illustrate two-mode
(x2 = 2.0) and single-mode (x; = 0.65) behavior. The
transition to single-mode behavior at X3 = 0.73 (see

Imk
Fundamentol Mode 21
Higher Order MOde i
-2 -5 3 \ 05
Xy —— \
\
\ -1
\
\
\\ Wl
\
\
\

Fig. 14. Variation of poles corresponding to propagating modes
(solid curve) for a two-mode case (N = 2) as a function of trunca-
tion point. The disappearance of the higher-order mode (at
%1 = —0.73) and the appearance of a pole on the lower imaginary
axis (dashed curve) are also shown. u(x) = —6 sech? x.
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Im fTT (kr)

1

05

Re t7(kr)

025 05 075

Fig. 15. Parametric plot for k; € [~m, 4], indicating the pres-
ence of two propagating modes for xo = 2.0. v(x) = —6 sech® x.

Im '"(kr)

1

0571

Re t™(k)

0.8

Fig. 16. Parametric plot for k. € [—, +=], indicating single-
mode operation for x, = 0.65. v(x) = —6 sech? x.
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000051
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0.8 1 1.2 L4 x,

~0.00051
-0.001 §

~0.0015

Fig. 17. Critical value of x; = 0.73, indicating transition to
single-mode operation. v(x) = —6 sech?x.

Fig. 14) is verified in Fig. 17, where Im ¢t77(k,; x2)|4 -_10-5
is plotted as a function of x,.

A potential truncated in the manner that we have de-
scribed supports an infinite number of leaky modes.
They represent the discrete set of complex eigenvalues of
Eq. (8), which are identified by poles in the lower complex
k plane.’” The poles with larger values of p. [see Eq. (31)]
contribute the largest loss.

A general study of the behavior of the leaky modes is
beyond the scope of this paper. It is clear from our results
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that as guided modes proceed through cutoff, their eigen-
values may proceed onto the lower Im % axis rather than
directly becoming leaky modes. Marcuse'® considered
this question for a step-index planar waveguide, and he
found similar behavior for the first odd mode.'®* To cite a
further example in our own data, the simple two-mode
potential considered in Subsection 4.C indicated that two
poles on the lower imaginary axis, initially located in the
vicinity of &, = —1.2 and k; = —1.03, converged and disap-
peared from the axis at k; = —1.113 as x, varied from 1.63
to 1.626. A systematic study of these and related ques-
tions merits serious consideration.

5. CONCLUSIONS

A theory has been developed for modeling and analyzing
planar optical waveguides with sech® x and exponential
profiles as representative examples. The waveguide prop-
erties, such as the number of propagating modes and the
value of their propagation constants, can be obtained from
the analysis of scattering coefficients. The technique has
been further extended to analysis of waveguides formed
by truncated refractive-index profiles. Critical parame-
ters, such as the core widths at which modes attain cutoff,
can be obtained by using this method. The influence of
variable core width on the behavior of propagating and
leaky modes is demonstrated in this paper.

Calculations indicate that the truncated profiles that
model typical refractive-index profiles in waveguides do
not always have scattering coefficients in the form of a
rational function of the complex transverse wave number
k. This is an important result, because earlier synthesis
procedures using inverse scattering theory have assumed
only rational functions of & for scattering data (see Ref. 2).
In principle, the method is applicable to a class of

refractive-index profiles for which the Jost solutions can
be obtained.
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Synthesis of Guided Wave Optical Interconnects

Duncan W. Mills and Lakshman S. Tamil, Member, IEEE

Abstract—We have designed a guided wave optical intercon-
nect which reduces or ecliminates clock skew by ensuring si-
multaneous delivery of clock pulses to chips mounted on a
wafer. The interconnect consists of a multimode trunk wave-
guide and a set of branch waveguides, one per chip, each of
which couples one mode out of the trunk waveguide. The clim-
ination of clock skew is accomplished by taking advantage of
the different group velocities of the modes inherent in multi-
mode waveguides and suitably tailoring the propagation con-
stants of the trunk waveguide according to the location of the
respective chip on the wafer. Inverse scattering theory, specif-
ically the method of Darboux transformations, is employed to
design the refractive index profiles of the trunk waveguides,
using the set of propagation constants selected during the first
stage of the design, as input data. It is shown that by using
transverse coupling and suitable design of the trunk and branch
waveguides, efficient coupling from the trunk to the branch
waveguides can be ensured. Techniques for ensuring a sym-
metric trunk refractive index profile are investigated.

I. INTRODUCTION

IGH-speed computer circuitry requires the distribu-

tion of information and/or clock pulses between var-
ious hardware elements within the system, including
boards, chips, and logical elements within a chip. Idealily,
the clock signals reach their intended destinations simul-
taneously, but in practice, the exact arrival times are
skewed since the clock signal emanates from a single
source to various locations distributed at different lengths
from the clock source. In the past, a number of techniques
for reducing clock skew in standard VLSI systems con-
sisting of metal or polysilicon interconnects have been
suggested. These include layouts composed of equal-
length lines [1], or breaking the chip into blocks, each
with an internally generated high-frequency clock con-
trolled by a low-frequency chipwide clock [2}. Aside from
the fact that it is not always practical to arrange circuit
elements to meet these physical requirements, a large
amount of metal wiring is required to implement these
schemes. The trend towards higher data rates, resulting
in a skew which is a larger percentage of the clock pulse
duration, has produced further clock distribution schemes
[31-[5). This paper presents a method for designing
guided-wave optical interconnects with reduced clock
skew, applicable in a chip-to-chip or intrachip situation.

Manuscript received November 12, 1992; revised February 15, 1993.
This work was supported in part by U.S. Office of Naval Research, Grant
N0014-92-1-1030.

The authors are with the Erik Jonsson Schoo! of Engincering and Com-

puter Science, and Center for Applied Optics University of Texas at Dallas,
Dallas. TX.

{EEE Log Number 9212658.

The potential advantages offered by optical intercon-
nections over standard wire or polysilicon lines are dis-
cussed in a good review article {6}, which suggests that
optics can alleviate problems stemming from resistive and
capacitative loading in wire/poly lines, which is delete-
rious to the signal amplitude and shape, particularly at
higher frequencies.

In this paper, it is proposed that graded-index guided
wave interconnects can effectively reduce clock skew by
suitable design of the refractive index profile {7]. This
design is accomplished by properly tailoring the propa-
gation constants of the guided modes to provide equal
propagation times to a set of detectors. The scheme pre-
sented in this paper employs several optical channels, each
having a different refractive index profile. This includes
a main multimode channel and several single-mode wave-
guides coupled to the main line. Total system design takes
into account the problem of clock skew as well as efficient
coupling between the trunk and branch waveguides.

Section II of this paper describes the relation between
clock skew and the guided-mode spectrum, followed by
a description of the proposed optical interconnection lay-
out. Section III provides the physical model of the optical
waveguide used as the building block of the optical inter-
connect circuitry. The refractive index profile of the mul-
timode guide is then carried out using an efficient recon-
struction algorithm which generates a refractive index
profile based on the guided mode spectrum and desired
coupling characteristics between the main waveguide and
the single-mode guides. These are discussed in Sections
IV and V, respectively. Design examples are provided in
Section VI, leading to conclusions in Section VII.

II. OpricaL INTERCONNECT CIRCUIT

The interconnect network is to be mounted on a GaAs
wafer (10.16 cm in diameter), as shown in Fig. 1. The
goal of the interconnect circuit is to deliver a pulse from
the source to each of the detector points on the wafer si-
multaneously. The circuit consists of N detectors or chips
at points Py -+ - P, connected by a network of inte-
grated optical waveguides consisting of a N-mode trunk
line feeding N branches, which are generally of a different
design from the trunk. B

Denoting the refractive index of the waveguide clad-
ding (assumed, for simplicity, to be the same on both sides
of the guiding layer) by n,, a pulse impressed upon a given
mode with propagation constant f3 travels at the group ve-
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BRANCHES

Fig. 1. The optical intercoanect. Refractive index profiles are designed so
that a pulse launched from point § reaches each of the points P

: w T Py
simultaneously.
locity v,, where
1 _dB wn} 0
v, do 8 c?
so that a pulse traverses a given length L in time
2
w Ny
7=——L. 2
Bl 2)

Here, w denotes the angular frequency of the radiation,
and c is the vacuum velocity of light. Consider a clock
pulse launched into the interconnect at point S. The time
for a given mode to propagate from S to a designated P,
is

w nj

— )
Tm = 5~ 73 L(m s

m=1,---
mc

N 3)
where L™ is the distance from the source to Py, and B,
is the propagation constant of the mode delivering the sig-
nal to Pyy,.

For the purpose of this analysis, the important quan-
tities are the total distances from the source to the points
P,. Arranging these in order of increasing length

LN>LN_|>"'>L| (4)

50 that Ly = max {L‘™}, L, = min {L™}, the points P,

* + * Py will be synchronized if the propagation constants
satisfy

by L By Ly B v
B L’ B CBu- o Lued
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This provides us with a set of N propagation constants

By < By < - < By (6)
which must be supported as propagating modes within the

interconnect. The propagation constants themselves are
restricted to the range

k()nz < Bm < k()nmax (7)

where n,, is the maximum core refractive index, and n,
the refractive index of the cladding.

The design of the interconnect circuit consists of two
interrelated parts. The first concemns the design of the re-
fractive index profile for the multimode trunk waveguide,
based upon the spectrum generated in (5). The second in-
volves the design of the branch waveguides, each of which
must efficiently couple off the appropriate mode from the
trunk and deliver it to the designated point. This raises
the issue of waveguide coupling. In Sections III-VI, we
illustrate the application of inverse scattering theory to the

related problems of refractive index profile design and
coupling.

III. WAVEGUIDE MODEL FOR OPTICAL INTERCONNECT

The waveguide model consists of a one-dimensional
planar structure with graded-index core n(x) and cladding
layers of constant refractive index n,, as shown in Fig. 2

[81.

With propagation taken along the z axis, the TE modes
take the form

E ) ei(wl - B2)
¥

(8)
where the electric field E,(x) is given by
d*E, 2 o s
) + lkon“(x) — B71E, = 0. 9)

Rearrangement of the parameters by defining the trans-
verse wavenumber k* and the potential v (x),

k* = kn — 6

v(x) = kglni — n*(x)]

(10,
brings (9) into the Schrodinger equation form
d’E, ,
e + (k" — v(x)E, = 0. (an

Here, ky = w/c is the free space wavenumber, § is the
propagation constant, and c is the velocity of light in vac-
uum. From these considerations it is clear that n, repre-

sents the asymptotic refractive index of the corresponding
waveguide, provided

v(x) = 035 x = +oo. (12
The exact model for the waveguide is a channel geometry
However, for the sake of mathematical simplicity, w:
consider the planar geometry with one transverse coordi
nate. For certain separable refractive index profiles, th

)
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Fig. 2. One dimensional planar waveguide with variable core refractive
index n(x) surrounded by cladding layers of constant refractive index n,.

two-dimensional refractive index surface can be written
in the additive form [9],

n(x,y) = n3 + ni(x) + ni(y) (13)

in which case the y-dependent portion of the refractive
index can be designed using the resuits of planar geome-
try, resulting in a complete design of n(x, y).

IV. RECONSTRUCTION BY TRANSFORMS

Inverse scattering theory provides a framework whereby
the potential of the Schrodinger equation can be recon-
structed from a set of eigenvalues selected a priori. In-
verse reconstruction, based on the solution of the Gel-
fand-Levitan integral equation, has recently been applied
to the design of monomode waveguides {8], [10]. In gen-
eral, this technique is cumbersome when several bound
states are present. As an alternative, we will employ the
method of transformations (known variously as Darboux
or Crum-Krein transformations [11], [12]) to obtain mul-
timode potentials suitable for refractive index design in
optical interconnects.

For these purposes, it is useful to have a basic under-
standing of scattering parameters related to the potentials

of the Schrodinger equation, which we assume to behave
asymptotically as

v(x) > 0, x = too. (14)

A plane wave e "™ incident on the potential from x =
— oo, we give rise to a reflected portion taking the form,
ro(ye ™ (15)

as x =+ —oo, as well as a transmitted wave,

t_(kyet® (16)
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as x — oo [13]. Similarly, the coefficients r (k) and ¢ (k)
can be defined, where it can be shown that ¢, (k) = ¢_ (k)
=_t(k). The Schrodinger equation then admits a pair of

Jost solutions, f, (k, x) and f_ (k, x), defined according to
their asymptotic behavior:

filk, )e™™ =1 x> too. a7

The pairs {f+ (k$ .X), f+ (—ka X)} and {f— (k’ X), f-— (—k:
x)} comprise sets of linearly independent solutions to the
Schrodinger equation, allowing construction of the linear
combinations in terms of the transmission coefficient ¢ (k)
and the pair of reflection coefficients r, (k) and r_ (k):

1 _(k
foled) = —f(~k 0+ =R ¢ 4 a8)

t(k) t(k)
and
_ _1_ . ri (k)
f— (k7 x) - t(k)f+( l"’ X) + [(k) f+ (kv x)' (19)

The scattering data, consisting of these scattering coef-
ficients and the bound state eigenvalues,

kp = ik (Kn > 0) (20)
along with the normalization constants, completely char-
acterize the form of the potential. The bound state wave-
functions are characterized by exponential decay for large
|x], and there is a direct one-to-one correspondence be-
tween these bound states and the guided waveguide modes

characterized by a discrete spectrum of propagation con-
stants

B = \/k%n% — ki = \/k%n% + k2. 2n
It is clear from (17)-(19) that the eigenvalues are poles of
the transmission coefficient which lie on the upper im-

aginary axis of the complex k plane and that the bound
state wavefunctions, which behave asymptotically as

e, are merely the Jost solutions evaluated at these
poles:
. rs(iKy) . .
fi (“(lrn x) = .*.ﬁi: (“(nn x) (22)
(K =

from which follows the important relation,

'+ (iKm) r_ (iKm) .

) k) @3

A rather extensive derivation leads to alternative repre-
sentations of the ratio of scattering coefficients implied by
(22), useful for quantifying waveguide coupling {14]:

2ik%§—) = S felenv@e™™ dr. Q4

Equation (5) provides a prescription for constructing a
spectrum beginning with the highest mode, 8,, whose
value is arbitrary, subject only to the requirement 3, >
kony, and building upon it until the fundamental mode,
characterized by 8y, is added to the spectrum.

The transform procedure is a technique which allows
for the construction.of N — mode potentials by specifying
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a priori a set of bound state eigenvalues, derived from the

set {Bh 62: Ty, BN} Via (lO):
kn € {ixy, ixy, =« -, ixy} (25)
where
KNZKN__‘?_"’ZK|>0. (26)

The following discussion does not constitute proof of the
transformation method, for which interested readers are
referred to reference [12]. Rather, it outlines the practical
Steps necessary to construct a particular class of potentials
which suit the purposes of refractive index profile design.

In the method outlined here, we are adding the N bound
states to some chosen initial potential designated vq(x)
which is assumed to contain no bound states. As addi-
tional input data, we require the explicit from of the Jost
solutions f "i (k, x) associated with vg(x).

Defining the N linear combinations of the Jost solutions
as

Yo = (SO (s 2 + P f (i, 2)
m=1,---,N @7

where p,, is an arbitrary positive definite parameter, the

corresponding N-mode potential is simply:

2

dxl

o) = vo(x) — 2 In W(y,,

"N (28)

In the above equation, the quantities W{( ) denote Wron-
skians, i.e.,

W(Yl' Y2, ", 'YN)
Y1 Y2 YN
Y1 Y2 YN
= (29)
,Y(IN—I) ,Y(zN—l) .. ,Yg/lv~l)
whose rows consist of functions Y1 * * - vy differentiated

with respect to x from zero to N — 1 times. Equation (29)
clearly illustrates the manner in which the N bound states

are progressively added in stages represented by rows and
columns of the Wronskian.
The Jost solutions corres

ponding to the generated po-
tential take the form

-1 N
frlk, x; N) = — b
II (., — ik
m=1
. W(’Ylv T, 'YN’f[:-(kr X))
W(’Yls Tt 'YN)
' 1
f-(k, x; N) = T
I (e = i)
Wi, = o yw fo (k%)
. . @30
W - ) G0

Designating the scattering data for vo(x) as T(k), R, (k),

the data pertaining to the potential constructed in the pre-
ceding algorithm is simply:

k+iKN
k_iKN

T(k)

k + iy k + ix k +
re(0 = (—l)Nk—“iK:k_Tié k= iy
(D

clearly illustrating the presence of N poles representing
the N bound states.

The normalization constants,

40 ~1
<[ Rne]

o
3
]

Im{Res r, (k,)}

[S: FZ (ks %) dx]~l

which play a critical role in waveguide coupling, are re-
lated through the transmission coefficient:

d2

i

Im{Res r_(k,)} (32)

Cndm = —i Res {t(k,)}. 33
The normalization constants c2, also transform in a con-

trolled way as the potential is constructed. It can be shown
that (see [12])

et =up (34)
where
v K + K
Pm = <(—l)m—l H ! m) T(le)

. I=m & — K

m=1,2,--- N. (35)
In effect, to every set of N 3-tuples

{UO(x)a Kins pm} m = ls T, N (36)

there corresponds a unique N-mode potential un{x). In this
paper, we will assume

vo(x) = 0,
[k, x) = et 37
with pertinent scattering data
TKk) = 1,
Ry (k) = 0. (38)

To demonstrate the procedure used here, we have used
three sets' of data shown in Table I, and have recon-

structed the refractive index profiles shown in Figs. 3-5.
Unless otherwise indicated, we assume

ny, = 3.0
A =09 um, 39)

throughout this paper. In Fig. 3, the eigenvalues are
equally spaced and all p,, = 1. The resulting refractive
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TABLE {

Data CHARACTERIZING THE REFRACTIVE INDEX PROFILES OF FiGs. 3-5
Bu (Xkgna), oo, Fig. 3 Fig. 4 Fig. 5
B<. o« 1.09752, 1 1.05169, 1.09752, 547
[ 1.07611, 1 1.05269, 1 1.07611, 0.003
Bs. Py £.05369, 1 1.05369, 1 1.05369, 0.01
B.. o> 1.03202, 1.05469, 1 1.03202, 96
B.. 0y 1.01034, 1 1.05459, 1 1.01034, 235

n(x)

TTTTTT T

D o SRR B

S VY S I U W S B!
-2 { 2
X(pem) :
Fig. 3. The smooth, symmetric trunk refractive index profile resulting from
evenly spaced eigenvalues and p,, = 1 for all m.
n(x)
Lt I S R S | [ SRS SN S W PR S T S VT S |
-2 -1 | 2

X(gLm)
Fig. 4. Trunk refractive index profile resulting from five-fold near degen-

eracy. Symmetry is retained since p,, = 1 for all m.

index profile is symmetric about the origin and provides
a smooth single channel. If near-degeneracies are intro-
duced into the spectrum, splits will occur in the refractive
index profile. The nature and extent of the splits will de-
pend upon the number of modes involved. This is illus-
trated in Fig. 4, where we introduce a quasi-degeneracy
across the entire spectrum, causing the expected split of
the refractive index profile into five channels. The profile
remains symmetric about the origin. When the original
spectrum is restored, but one or more of the { p,,|m = 1,
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2
~~

>
~

T
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u
N

T T T T T

X{(gem)

Fig. 5. Trunk refractive index profile with same spectrum as in Fig. 3.
The p,, are varied as indicated in Table 1.

TABLE II
PROPAGATION CONSTANTS FOR SMOOTH PROFILE
SeconD CoLumN GiVES ReESULTS oF FINITE
DiFFERENCE METHOD APPLIED TO
PoTeNTIALIN FIG. 3

SMOOTH PROFILE, (Fig. 3), Dircct method

comparison
B, (Xkgny) B.. (Xkyns,), direct method
1.09752 1.09752
1.07611 1.07614
1.05369 1.05377
1.03202 1.03218
1.01034 1.01054
2, - -+, N} deviate from unity (Fig. 5), the result is a

splitting despite the wide spacing of the eigenvalues.

This example illustrates the application of the recon-
struction procedure to typical spectra compatible with
GaAs technology, with resulting refractive index profiles
which are symmetric and well behaved. It is clear from
our analysis that a material such as AlGaAs [15], with a
large variation in refractive index as a function of mole
fraction, is well suited to the proposed interconnect since
it allows for a relatively large spread of propagation con-
stants, and consequently, greater flexibility in placement
of chips on the wafer.

As a check of our algorithm, one hundred data points
representing the value of the refractive index profile shown
in Fig. 3 were used as input to a finite-difference algo-
rithm, solving (9), whose output considered of the cor-
responding five propagation constants. Results of this di-
rect solution are given in the second column of Table II,
showing excellent agreement with the exact propagation
constants.

Completion of the optical interconnect problem in-
volves design of the branch waveguides. In the next sec-
tion we discuss transverse coupling between the trunk and

branches, and show how the parameter p,, can be adjusted
to provide the desired coupling characteristics.
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V. CouUPLING TO BRANCHES

Efficient power transfer from the trunk to each branch
can be accomplished by transverse coupling which will
occur over the interaction length represented in Fig. 1 by
the short spans along which the branches are parallel to
the trunk waveguide. The analytical approach used here
is based upon the standard perturbation technique, under
an assumption of weak coupling [16], [17]. The novelty
of our analysis lies in relating the scattering analysis of
the previous section to the calculation of transverse cou-
pling coefficients derived from coupled mode theory.

Fig. 6 shows two neighboring (nonoverlapping) wave-
guides, each of which is assumed to have a graded-index
core with refractive index profiles ny(x) and ng(x), re-
spectively. We will assume that each waveguide sepa-
rately supports y-polarized TE modal fields E;(x) and
Eg (x) with propagation constants 8, and 3z, respectively.
The interaction between the two fields will be represented

by a z-dependent linear combination of the individual
waveguide modes:

8(x, 2, f) = A@QEr(x)e™ ™R + B(2) E, (x) e ~B

(40)

where the exact form of the z-dependent weighting coef-
ficients A(z) and B(z) are to be determined. We will as-
sume that the coupling is weak, i.e.,

\dZA(z)

dA(2)
dz*

daz

d*B(2)

Br dz?

dB(z
< \BL df) .

(“n

The interaction between the waveguides is represented by
first-order differential equations:

dA .
D _ g B (e e 42)
dz
and
aB i :
@ _ i) e@roz 43)
dz
The coupling coefficients,
- Ipe
e = {ZBRNRR} @
and
_ (e -
wfd) e
are defined in terms of the various integrals
Neg = g Ex(x) dx,
+ oo
Ip, = S_ Er(x) vp(x) Ep (x) dx (46)

n(X)

ng{X)

m“z X

Fig. 6. Weakly-coupled waveguides used to model the coupling interac-

tion.
and o )
Ny = S El(x) dx
Iip = X_m EL(x) v, (x) Eg(x) dx. @47

The coupling coefficients may be written in terms of the
scattering data as follows. Let the model consist of two
waveguides described by potentials v, (x) and vg(x). For
the purposes of the analysis, let us shift v; (x) in the neg-
ative x direction by an amount s so that

Er(x) = fR (i, x)
E () = fi(ik, x + 5)

vr(x) = k§ln3 — nk(x)]

v (x +5) = k§ln} — ni). (48)

This form of the fields was chosen so that they have the
simple asymptotic forms

Epg(x) = e“ asx - —oo,
E(x) > e®e ™ asx = oo. 49)
The separation s is arbitrary, subject only to the condition
that the potentials do not overlap to any large extent.

In the region comprising vz (x), E.(x), the field of the
lefthand potential taken alone, takes the simple form,

EL(X) — eik(.\'-t-s)lk:i'(

(50)

enabling the interaction integral to be written as

= e_“ g f[i(k’ -x)UR(x)eik-t dx\k=ix
= Sm rﬁ(k)f“ (k, x)vg(x)e™ dx|, _;
- [R(k) + % R k=i

f RL

e r? (i) r® (ix)
R ) )

I

= —2ke

(62Y

where we have used (22)-(24). The coupling coefficients
now take the explicit form

[RL —K
K = =

_ e e—udz
2BRNRR BR "

= — X e Im{Res r® (i)}
Br

(52)
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Similarly,
Iz K w2
Kig = = — e
HUBNL B
—K
= —¢

~ Im {Res r’ (ix)}. (53)
BL

It is clear that the coupling coefficients consists of two
parts: a factor depending only upon spectral information
and waveguide separation, and a (more interesting) con-
tribution from the normalization integral which is depen-
dent upon the actual geometry of the potential. To high-

light this, we will refer to the normalization constants as
shape factors, denoted

F = Im{Res r_(ix)}. (54)

It is clear from simple integration of (42) and (43) that
significant amounts of power can only be exchanged un-
der conditions of phase matching.

BL = Br = B. (35)
For the purposes of the optical interconnect circuit, as-
sume that the right-hand waveguide, with amplitude A4 (z),
represents the single-mode branch. Assuming the branch
to begin at some distance z = z, along the trunk, so that
A(zp) = 0, the coupled-mode equations have the solutions

[17]
A(Z) = \/;; B(zp) sin A8,z
KLR
B(z) = B(zg) cos AB.z, (56)
where
AB. = gz 57)

From (56) and (40) it is clear that the field of the com-
posite trunk/branch waveguide closely approximates a
two-mode system with propagation constants

B =B + AB.
B =8~ AB.. (53)
Under conditions of complete power transfer, i.e.,
KRl = KIR (59)
complete power exchange occurs at intervals of
zL=Z:L; m=13,5 --- (60)

measured from zg along the branch waveguide. Maximum
power transfer is generally ensured by employing identi-
cal waveguides (not a viable option in our application),
but it is clear from (53) and (52) that equal coupling coef-
ficients can be ensured by suitable manipulation of the
normalization constants of the various trunk waveguide
modes and the corresponding branch modes. For branches
placed to the right of the trunk, this amounts to

2(teunk) _

2(branch),
C”X d ( k]

m

m=1,--- N. 1)

N e £ € E Y % e €= 7 o TS v e £ £
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Consequently, we will select a set of single mode
branches, calculate d2*™*" and suitably tailor the trunk
waveguide, using (28) and selecting approximate values
of p,, based upon (61). In the next section, we consider

various sets of branches and carry out the trunk design in
accordance with these concepts.

VI. DesigN ExXAMPLES

The design process consists of selecting suitable single-
mode branches, calculating their shape factors, and de-
signing the trunk refractive index profile for maximum
power transfer. Denoting the branch shape factors by

F®, this design process imposes a condition on the trunk
through p,,:

Pm =~y (62)
which follows directly from (34) and (61). It is clear that
the p,, act as the critical parameter in matching wave-
guides for maximum power transfer. We emphasize that
(62) is a condition freely imposed upon the p,, based on
the mode spectrum and the form of the branch wave-
guides.

At this point, the goal of the analysis is to determine to
what extent it is possible to provide maximum coupling
between the branch and the trunk while adjusting the de-
sign parameters in such a way that the refractive index
profiles are reasonably well behaved.

A smooth, symmetric trunk refractive index profile is
clearly preferable.to one with random variations and large
gradients. Using the same mode spectrum employed to
generate Figs. 3-5, we have determined that a step-index
branch design is sufficiently flexible to achieve attractive
profiles for the trunk waveguide, while maintaining con-
ditions of maximum power coupling. This is an encour-
aging result, as step-index waveguides are easy to fabri-
cate. In all cases considered, n, = 3.0, at a wavelength
of 0.9 um.

The step-index waveguide has been analyzed using
standard methods (see {16]). The purpose of the following
analysis is to put the step-index waveguide into the con-
text of inverse scattering theory and to demonstrate its

usefulness in the proposed interconnect. Consider a square
well potential of width D = 2d:

o - {kama —

0 elsewhere

(—d < x < d)
(63)

whose corresponding refractive index profile is a step-in-

dex planar waveguide with constant core refractive index
n,. Defining the parameter

K= Vk* — k§{n] — nf} = JignT - 67 (64)

we can write the Jost solutions and their derivatives for
square well potential as

-k, %)
fok, x)

a,(k) sin Kx + a (k) cos Kx

= Ka, (k) cos Kx — Ka (k) sin Kx  (65)
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and
fi(k, x) = b (k) sin Kx + b.(k) cos Kx

fik, x) = Kb, (k) cos Kx — Kb.(k) sin Kx. (66)
In addition, forx < —d.

fole,x) =e™™
frk, x) = —ike ™™ (67)
and forx > d,
f+ (k7 x) = eikX
Fioll, x) = ike™. (68)

Continuity of the Jost solutions and their derivatives at
these boundaries gives the coefficients:

—e™{K sin Kd + ik cos-Kd}
ag(ky = % )

e™{K cos Kd — ik cos Kd}
a.(k) = ,

K
by(k) = —as(k),
b (k) = a.(k). (69)

From the first of these, it is clear that the eigenvalue equa-
tion for the even modes is

tan Kd = —X (70)
nRE= e .

The reflection coefficient [18],

i . W[f+(k’ X), f—(—k’ x)]
-8 = e 0, fu e, 9] @

follows in a straightforward way. Since,
WLf-k, x), fi(k, )]
Kb.(0a® — a, (b k)
2Kb, (k) a. (k) (72)

I

and ,
WLf-(=k, x), fo (k, X)) = 2K (b;a.(—k) — a,(—k)b.)

(73)
it follows that
a:(_k)bc(k) _ bs(k)ac('—k)
k) = 74
-0 2, ()2, () o
clearly illustrating how the pole locations are the respec-
tive even and odd mode eigenvalue equations. We are in-

terested in the fundamental mode with eigenvalue k; =
ixy, for which the residue is given by

FP = Res {r_(ix,)}

I _oua Ktan Kd — ik
= ——e¢

T2

y k=ici- (715)
E{ {K tan Kd + lk}
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Thiis expression can be simplified so that the coupling
coeflicient takes the form

K2K2|
B(l + &, d)Yk5(n} — nd)

in exact agreement with the result obtained using the
standard method [19].

Consider a set of branches consisting of five square
wells of width {D,|m = 1,2, ---, 5}, and constant
core refractive index {n{"|m = 1,2, - - - , m}. With the
eigenvalue spectrum preselected, the design procedure
amounts to a selection of branch core widths and core re-
fractive indices which allow single-mode operation. Since
B2 = kin? + «2, and nk3 —
core refractive index is

kZ 2 + 2
min {n{"} = <—(£2Eg—ﬁ>. an

Requiring the core width to be at least one wavelength
nominally gives

fkpel =

e —x15 21d

e (76)

2 > 0, the minimum

min {D,} = | pm. (78)

Table III lists the results of three sets of design data,
beginning with a set of branches each 1 um in width, their
corresponding core refractive indexes, chosen so as to sat-
isfy the eigenvalue equation for this width, and, in the last
column, the corresponding values of p,,. Fig. 7 shows the
resulting refractive index profile. In the second set, a sim-
ilar pattern was followed, but for larger core widths, and
the resulting trunk refractive index profile is plotted in
Fig. 8. Comparison with the previous result shows a
greater shift of the profile in the positive x direction, due
mainly to the three p,, which are less than unity, in con-
trast to the first case, where all p,, > 1. Both trunks ex-
hibit rather large index gradients, but are otherwise well
behaved.

The third case is the most interesting. It is clear from
earlier discussions that if we choose

Pm =1 {9
for all branch waveguides, a smooth, symmetric trunk re-
fractive index profile will result. Since laser diodes emit
even and odd field configurations, a symmetric trunk re-
fractive index profile, allowing for even and odd guided

- modes, will resuit in more efficient coupling between the

source and the trunk waveguide. In a somewhat tedious
but effective analysis, whose objective was to satisfy (79)
for all m, we began by plotting a given p,, (62) versus
n{" and D,,. Empirically it was found that the pair that
satisfied the eigenvalue equation and the condition p,, =
I lay in the vicinity of min {n,}, enabling one to narrow
down the range of D, values. A trial value of D,, was then
selected, the corresponding n{™ found from the eigen-
value equation. Using this pair (D,,, n{), p,, was then
checked for its proximity to unity. We were satisfied to
come within 3% of p,, = 1. If required, the procedure can

be repeated until p,, is sufficiently close to any desired
value.

S e b T S
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TABLE III
DATA FOR STEP-INDEX BRANCHES CORRESPONDING TO TRUNKS IN FIGs. 7,
8,AND 3

STEP INDEX BRANCH DATA

B (Xkony) d(=D/2), um n P
Fig. 7
1.09752 0.5 3.31 30.77
1.07611 0.5 3.25 99.81
1.05369 0.5 3.18 107.95
1.3202 0.5 3.11 7.83
1.01034 0.5 3.04 8.83
Fig. 8
1.09752 1.0 3.30 5.89
1.07611 1.0 3.23 2.26
1.05369 1.0 3.7 0.54
1.3202 1.0 3.10 0.01
1.01034 1.0 3.03 0.003
Fig. 3, approx.
1.09752 0.648 3.30613 1.00901
1.07611 0.664 3.24113 1.00456
1.05369 0.947 3.16782 0.984028
1.03202 1.1 3.10102 0.97903
1.01034 1.4 3.03384 1.00375
n(x)
3 _
X{fLm)
Fig. 7. "Trunk refractive index profile for step index branch waveguides of

width 1 pm.

It bears repeating that setting p,, = 1 for all modes
merely guarantees a symmetric trunk refractive index pro-
file. The smoothness of the profile will also depend upon
the spectrum of propagation constants, as we have seen
in Figs. 3-5. In fact, the smoothness of the refractive in-
dex profile shown in Fig. 3 is a direct consequence of the
relatively equal spacing of the propagation constants. The
more general question of creating a single, smooth guid-
ing region for an arbitrary set of eigenvalues and normal-
ization constants is considered in {10]. It is evident from
our results, however, that the parameters goveming the
step-index branch waveguides are sufficiently flexible to

2833
L 1 d
-2 -1 1 2
X(fem)
Fig. 8. Trunk refractive index profile for step index branch waveguides of
width 2 pm.

couple to a large number of possible trunk waveguides
designed using Darboux transformations.

VII. CONCLUSIONS

Guided wave optical interconnects consisting of graded-
index optical waveguides were designed. It was possible
to design an interconnect consisting of a multimode trunk
waveguide coupled to several single mode branch wave-
guides, each of which delivers a selected mode to a de-
tector. By exploiting the group velocity dispersion inher-
ent in multimode waveguides, it was possible to select a
set of propagation coustants such that each of the modes
can be delivered to its assigned detector simultaneously,
thereby eliminating clock skew.

The synthesis of waveguides with prescribed propaga-
tion constants is the key to the design of this interconnect.
Consequently, an inverse scattering algorithm was re-
quired to reconstruct the refractive index profile which
would support guided modes with this preselected spec-
trum. It was determined that the method of transforma-
tions provided a flexible, efficient means of generating the
multimode trunk refractive index profiles suited to our use.
These profiles are continuous and decay rapidly in the
transverse direction, making them well suited to practical
systems. (An in-depth analysis of the effects of truncating
such refractive index profiles to simulate core-cladding
discontinuities is given in [20]).

By manipulating the normalized constants, it was pos-
sible to take full advantage of the possibilities of the
transformation method. In particular, it was possible to
efficiently couple the trunk waveguide and each of the
branch waveguides, despite the fact that the trunk and
branches consisted, in general, of different refractive in-
dex profiles. This analysis resulted in a formulation of
waveguide coupling coefficients in terms of the scattering
data pertaining to the corresponding potentials. It is em-
phasized that this formulation is completely general and
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applicable to any waveguide systems in which the weak
coupling approximation is valid.

In addition, it was found that proper manipulation of
the normalization constants guaranteed trunk refractive
index profiles which were symmetric and, under certain
circumstances, free from large index gradients. However,

it is clear that in general, the freedom of choosing unequal
lengths for clock distribution is gained at the cost of the
complexity of the waveguide profile.

Directions for future work include analyzing the sen-
sitivity of the refractive index profiles to variations in the
propagation constants, and an in-depth analysis of al-

lowed variations in chip placement within the prescribed
wafer area.
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Coupling in Multilayer Optical Waveguides:
An Approach Based on Scattering Data

Duncan W. Mills" and Laksham S. Tamil, Member, [EEE

Abstract—Within the context of weak coupling theory, we
derive representations of the coupling coefficients between
neighboring waveguides by representing the field-dependent in-
teraction integrals by algebraic expressions involving scattering
data and we illustrate the contexts in which scattering theory

can make a viable alternative to existing formulation of the
waveguide coupling problem.

1. INTRODUCTION

OUPLING between waveguides in a multilayer opti-

cal structure is the cornerstone of optical spatial
switching. This form of coupling, which arises when the
evanescent fields of one waveguide perturb its neighbor,
can be analyzed by several methods. Traditionally, the
most popular approaches have been a weak-coupling per-
turbation analysis (1] or the analysis of local normal
modes [2]. The problem continues to generate consider-
able interest, as evidenced by recent work formulating
variational methods and finite-difference schemes [3]. The
results presented in this paper were motivated by our
recent interest in analysis of optical waveguides using
scattering data (i.e., eigenvalues of the bound modes,
reflection, and transmission coefficients).

Specifically, this paper shows that the traditional weak-
coupling analysis of interacting waveguides can be refor-
mulated in the language of scattering theory. We show
that the coupling coefficients describing the interaction of
two neighboring waveguides have straightforward repre-
sentations in terms of their scattering data, eliminating
the need to explicitly calculate the field-dependent inter-
action integrals by representing these integrals with
straightforward algebraic expressions involving the
guided-mode propagation constant and the residue of the
reflection coefficient. In this paper no attempt is made to
reformulate the mathematics of scattering theory, but
rather to identify existing aspects of this theory which are
useful when applying transverse coupling to waveguide
design, and to illustrate the contexts in which scattering
theory can make a viable alternative to existing methods.

1I. WAVEGUIDE MODEL

Fig. 1 shows a multilayer planar waveguide consisting of
two coupled graded-index (GRIN) guiding regions. For
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Fig. 1. Typical multilayer planar waveguide (two layers shown). Guide-
ing regions are shown shaded.

the moment, consider a single planar graded-index wave-
guide consisting of an inhomogeneous core with a varying
refractive index n(x), surrounded by two cladding layers
of constant refractive index n,. To simplify the analysis
we assume that each guiding region is infinite in the y

direction and supports a single y-polarized TE mode of
the form

E(x,z,t) = E(x)e'Fre™iu, 9]
where z is the direction of propagation, w is the fre-
quency, and B is the longitudinal propagation constant. It
has been assumed that the waveguide is infinite in extent
along the y axis. Here, &, is the free space wavenumber.

The field E (x)r is defined by the scalar differential
equation

d2E,(x)
# + [k§nr(x) - B|E(x) =0. (2
This equation can take the form of a Schrddinger

equation which is particularly well suited to analysis using

scattering data. Defining the complex transverse propaga-
tion constant k (= k, + ik,) as

ket = king ~ B?
brings (2) into the Schrédinger form

2
Y

=+ [ = u(E, = o, )

0733-8724 /9430400 © 1994 IEEE
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whose potential

v(x) = k3[nd - n*(x)] (5)

varies across the waveguide core and vanishes in the
cladding. Eq. (5) clearly illustrates how the depth of the
potential may be varied either by changing the wave-
length, altering the refractive index profile, or both. In

this scheme the mode cutoff condition, B = kyn,, is ob-
tained when

k = 0. (6)
The discrete set of guided modes, characterized by kgn,
< B < kyn,, or equivalently by 0 < Im k <

Im (kgy/n} — n?), is represented by points along the posi-
tive imaginary axis of the complex k plane. In scattering
theory, the guided modes are termed bound states, distin-
guished by their eigenvalues k. As the fundamental mode

of a planar waveguide is TE, (4) is sufficient to describe
the bound mode in a single-mode waveguide.

A. Scattering Coefficients and Jost Solutions

Scattering theory (direct and inverse) is concerned with

. the relationship between a Schrodinger potential v(x) and

its associated scattering data (i.e., reflection and transmis-
sion coefficients). A plane wave e**** incident on the

potential from x = +co will give rise to a reflected por-
tion taking the form

r_(k)etk= (7

as x = —o, as well as a transmitted wave,

t-(k)e+ikx (8)

as x — . An alternative viewpoint is provided by the

coefficients r (k) and ¢, (k), which define reflected and

transmitted portions of a plane wave incident from x =
— oo,

The Schrodinger equation admits a pair of Jost solu-

tions, denoted f, (k, x) and f_(k, x), defined according to
their asymptotic behavior:

lim f,(k,x)e =

X~ +

lim f_(k,x)et**'=1. (9)

X— —w

The pairs {f, (k, x), f,(=k, x)} and {f_(k, x), f_(—k, x)}
comprise sets of linearly independent solutions to the

Schrodinger equation, allowing construction of the linear
combinations (4]

r;(k)

o e D).

The Wronskian, defined as W{f, gl = fg' — gf* (the prime
denoting differentiation with respect to the coordinate),
provides a set of relations,

1
folk,x) = t(k)f;(—k,x) +

2tk 2ik W Lol (D
T T e~ WUt 0, £ 0,

so that ¢_(k) =¢,(k) = t(k), a result which is a direct
consequence of the asymptotic behavior stipulated in (9).
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In addition,

L e
2ik = FWIfelk,x), f (~k,x)]  (12)
t(k) -
follows from (10) and (11).

During the course of this analysis, it is useful to shift
potentials along the axis. The scattering data changes in a
controlled way under a shift. Consider a potential v(x)
with Jost solutions denoted f,(k, x) and corresponding

scattering data r,(k), (k). It is clear that the shifted
potential v(x — d) has a Jost solution of the form

folk,x) = e*¥f (k,x - d). (13)

Using an overbar to denote the scattering coefficients of
the shifted potential, it can be shown that the reflection
coefficients associated with the translated potential are
related to the original data by a simple phase shift:

F_(k) — e+7‘ikdr__(k),
7 (k) = e 2%dr (k),

(14
while the transmission coefficient is unaltered:
(k) =t(k). (15
B. Guided Modes
Consider values of k (= ia) such that
! 0

that is, the bound state eigenvalues correspond to the
poles of ¢(k) which lie on the positive Im k axis. The Jost
solutions exhibit the asymptotic behavior

E’?ound(x) ~ eq:‘u'y X = + o (a > 0). (17)

This implies

r_(ia)
Gy -t 0,

fs (ia, x) =
, fola)
f_Cia, x) = T(z'cl—)f+(la’X)’ (18)
resulting in the following useful relation:

r_(ia) r (ia)
G LG (19)

The corresponding normalized guided-mode fields are
then

EFUd(x) = ¢ f, (ia, x) = c_f_(ia, x), (20)

where the ¢, are arbitrary constants. There is a one-to-
one correspondence between the bound states of the

quantum mechanics picture and these guided modes, and
we will use these terms interchangeably.
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I11. TRANSVERSE COUPLING

In this section we review the salient features of wave
interactions in a multilayer waveguide in the weak-cou-
pling approximation and reformulate the problem in terms
of scattering data. _

Fig. 2 shows two neighboring (nonoverlapping) poten-

tials corresponding to two waveguides separated by a
distance s:

s=dg—d, (d, <0). 1)

Each waveguide is assumed to have a graded-index core
with refractive index profiles n,(x) and n (x):

ni(x) = n} + Ani(x),

nk(x) = nd + Ank(x). (22)

We will assume that each waveguide separately supports
y-polarized TE modal fields E;(x) and Ep(x) with propa-

gation constants $3; and B, respectively. The interaction
between the two fields will be represented by a z-depen-

dent linear combination of the individual waveguide
modes:

&(x,z,t) = A(2) Ep(x)el@!=Fa?)

+ B(2)E (x)e«!~AuD) (23)
the exact form of the z-dependent weighting coefficients
A(z) and B(z) being a function of the interaction strength

induced by the transverse coupling. The governing equa-
tion for the field in (23),

3*&

ax?

tg w?

+ Ez— + ?z—nz(x)g’ =0,

(24)

where n?(x) is the refractive index of the composite
structure,

P2(x) = nd + Ard(x) + Ard(2), (25

dictates the coupling analysis which carries with it three
explicit assumptions.

i) Each waveguide individually supports a single mode
with propagation constants 3, and B.
it) The coupling is weak, i.e.,

d’4 dA4 d*B aB
P B L) U e B L B

iii)
f+wEJx)EJx)dx«:f+mEaR(x)dn @7

_Ignoring the second derivatives of A(z) and B(z), the
wave equation reduces to a set of coupled first-order
differential equation for the .z-dependent coefficients:

a4 :

i ikg, B(z)e {Pe=b® 4 jyepp A(2),
dB

zz— =l'KLRA(Z)€i(BL—ﬁR)Z+iKLLB(Z), (28)

67

N N T TN P T T e

p—— dp——————dg

T

V()= VO (X-d,)

A

2y
/9
VR(X)-VR(X-dR)
Fig. 2. Coupled potentials used to model the scattering picture of

weakly coupled planar waveguides.

where the coupling coefficients

o o imL
R 2BpNey’
IRR
Kpg = m, 29

are functions of the interaction and normalization inte-
grals:

+
Ip, = f_m Eg(x)vg(x) E(x) dx,

+so
g = f_m Ep(x)vg(x) Ex(x) dx, (30)

Nop = f+wE2(x)dx
RR _ R -

The coefficients «, ; and «,, follow by interchanging L
and R. The self-coupling coefficients «,; and kqp repre-

sent small corrections to the propagation constants and
are usually ignored.

In the phase-matched case (B, = 8, = B), the solu-
tions to (28) are

A(z) = {A(Zo) cos ABz + i‘/ SRe B(zy) sin ABZ},
Kir

B(z) = {B(zo) cos ABz + i‘/ L A(z,) sin ABz},
Kre

(31)

where

AB = kpLkg, (32)

and z, is the initial point of interaction. Given the initial
condition #(z,) = 0, the solutions become

A(z) = iB(z,) sin A Bz,

B(z) = B(zy) cos A Bz, (33)

provided

Kre = Kip = K, (34)
so that complete power transfer occurs at intervals of
(m/2)AB along the coupled length of the waveguides.

Substituting these expressions for A(z) and B(z) into (23)
indicates that the total electric fields consists of an ap-

Bmtas SRS TR TIRPRY
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proximate linear superposition of modes with propagation
constants,

B*=pB+AB,
B" =B~ AB. (35)

The interaction and normalization integrals are the
principal calculational hurdle associated with the weak-
coupling model. The latter, as previously shown, have a
convenient representation in terms of the scattering data.

In the next paragraphs we outline established scattering

relationships which are useful in representing the interac-
tion integrals.

Consider two different potentials v(x) and #(x). (These
are not, in general, the potentials describing the two

individudl waveguides [4]). In the limit as x — —oo, it
follows that

. 2ik 3
Wik, ), f, (e, 0)] = ol — W = #a,
. (36)

while in the limit as x — o, this Wronskian vanishes since

folle,x) = f (k, x) ~ e,
Now consider the derivative,

d i
EW[f+(k, ), o (k, )]

= [6(x) = v(Of, (b, 0)f, (k, x). 37

Integrating this expression yields
_[+wf£vv[f+(k,x)J1(k,x)]dx
—w dx
= =W £ le, ), £k, 0] |, (38)

providing a convenient integral relation for the Wron-
skian:

= —o?

[ TG = 5CNf, ke 0k, 1) d

2ik i
m[r_(k) —7.(R)]. (39)

Using similar steps, a companion expression can be de-
rived:

f+w[u(x) = 5QOIf_ (e, x) f_(k, x) dx

2ik L
= m—[r+(k) - rf(k)]' (40)

If 5(#) =0, (39) and (40) reduce to the useful form
+o - . 2ik
f_m Felk, )u(x)e**x dx = mr:(_k).

Writing the guided-mode electric fields of the right-hand
(or top) and left-hand (or bottom) waveguides in terms of

(41
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the Jost solutions for the respective potentials v3(x) and
v(x) gives

ER(X) Eng(iay X — dR),

E(x) =f2(ia,x - d,), (42)

where a bound state with eigenvalue k =ia (q¢ > () is
assumed. With the help of (30) nd (42), we find

+m .
ILR a e—‘adkf f—eL(k7 X = dL)Ul(x)e_‘kxdxlk=ia

= —2ae%, . (43)
The normalization integral N, is simply (5]
_ + o oL/ - _ 2 _ l
NLL = f_m [ + (za,x dL)] dx = m (44)

Defining the shape factors

F{=Im{Res r'® (i)},
F{ = Im{Res ri(ig)},

(45)
gives '
I q —a
KLg = = e vy, (46)
and by the same token,
Iy, —a
= = —e 4R, 4
Kpe 2N, e F 47)

Here, r2® and r% are the
plane wave impinging from x
tively. These results indicat
context of scattering theory,
efficients take on a particula
a portion which is depende
and the waveguide separatio
value is dependent upon th
tial. The condition for co
particularly simple form

reflection coefficients for a
= —®and x = +, respec-
e that when placed in the
the directional coupling co-
rly simple form consisting of
nt solely upon the eigenvalue
n, multiplied by a factor whose
e inherent shape of the poten-
mplete power transfer takes the

FL=FR, (48)

One form of this condition, which is likely to be encoun-
tered in practice, is simply

r®(k) = ri(k),

(49)
which implies

v (x) = vp(—x),
and the intuitively appealin
is coupled with 100% effici

(50)
g conclusion that a waveguide
ency to its “mirror image.”

IV. DESIGN EXAMPLES
A. Step-Index Waveguides

Coupling in step-index wave
using standard methods (see {
as a check for the cou

derived. Consider as
2d,:

guides has been analyzed
51); therefore, it can serve
pled-mode formalism we have
quare well potential of width D =

v(x) = {ké(”(z) —n}), —dy <x <d,,

51

, elsewhere,
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whose corresponding refractive index profile is a step-

index planar waveguide with constant core refractive in-
dex n,. Defining the parameter

K= \k* —({n} —n2) = \[iZn? = 8%, (52)

we can write the Jost solutions for square well potential as

a (k) sin Kx
f(k,x) = +ak)cos Kx, —d,<x< dy, (53)
e ikx x < ~d,,
and
b, (k) sin Kx
folk, x) = +b(k)cos Kx, —d,<x< dy, (54)
e*ikx x> d,.

Continuity of the Jost solutions and their derivatives at
these boundaries gives the coefficients:

—e'* (K sin Kd,, + ik cos Kd,)

as(k) = K >
e™* (K cos Kd, — ik sin Kd,)
ac(k) = K s (55)

b (k) = —a,(k),
b (k) = a (k).

The reflection coefficient (from (11 and (12)), follows in a
straightforward way:

a (=k)b (k) —b(K)a (—k)
2bx(k)ac'(k) ’

whose pole locations lead to the familiar eigenvalue equa-
tions

r (k) =

(56)

—ik

T, even,

tan Kd, = K 57N
— odd.
ik °

This result is applicable to both single- and multimode
waveguides. We are interested in the fundamental mode
with eigenvalue k, = ia, for which the residue is given by

_ 1 K tan Kd, — ik
Res {r_(ia)} = — —e~2ikdy
E{K tan Kdo + lk} Cia
. ' (58)

With the help of (47) and (57); the coupling coefficient
takes the form ’ '

_ K?*a?

lKRLl _ —as

2ad,
r

B(L + ad)ki(i2 —np) ¢ ¢ (59)

in exact agreement with the result obtained using the
standard method [6].

B. Depressed-Cladding Waveguides

The foregoing result puts scattering theory in direct
contact with established results, but provides little motiva-
tion to apply scattering theory as opposed to the conven-
tional techniques, due largely to the fact that the guided-
mode fields have straightforward representations and the
interaction and normalization integrals can be readily
calculated. As refractive index profiles become more com-
plicated, the need for an alternative method becomes
more compelling. Jordan and Lakshmanasamy (7} de-
signed high-V-number single-mode planar waveguides us-
ing a rational reflection coefficient of the form

~kyk,yk,
(k= k)(k = ky)(k — ky)°

which yields a single bound mode eigenvalue at ky = ia,
and two poles k; = —¢, — ic; and k, = ¢; —ic, in the
lower half of the complex k plane which represent tunnel-
ing leaky waves. The authors showed that the

Gelfand—Levitan reconstruction technique results in a
corresponding potential

r_(k) =

(60)

d
v(x) = 2{% - a(X)A“(x)A'(x-)]A"(x)yT, (61)

where « and vy are the row vectors

=[1 «x

. - x —~1nyx
em e”™m eﬂz],

y=[0 000 0 -ac+d], @

and A(x) is 2 6 X 6 matrix whose elements are listed in
the Appendix. The parameters are defined,

m = (o +p)/21"?

b

m, = o - p)/217?,

o =a’+ 2 -2¢c2,

(63)

I

p=[(a® — 4ch)(a? + ach)]2.
Some restrictions apply to the relative location of the

poles a, ¢;, and ¢, brought about by requiring a real
potential. Specifically,

—a
0<c, < — (64)
2
places a lower bound on c¢,, and
ag>p (65)

etches an upper limit on ¢, and ¢,. This condition is

identical to the one derived in (6] based upon the conser-
vation of energy condition,

fr( <1, all Re k. (66)

Each of the three refractive index profiles illustrated in
Fig. 3 propagates a single mode with propagation constant

B = 101034k

0lly-

(67)
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n{x)
30k

3o08f
3.06
3.04] ¢

3.02 !

2.98t

Fig. 3. Three depressed-cladding refractive index profiles for different
(cy, ¢2): (0,0.0014a) far right, (0,0.25a) dashed: 0.4994a, V0.687 a) left.

The depressed portion of the refractive index, character-
ized by a portion of the profile dipping below the nominal
AlGaAs cladding value 1, = 3.0, is most clearly evidenced

as the poles for the tunneling leaky modes are moved
farther from the lower Im k axis.

The residue at the pole representing the bound mode is
easily found to be

2, 2
(ci +¢3

(cf + (a + cz)z)

az—*—'yz
la.' 2
a?+ (1 +v)

(68)
where ¢y = @a and ¢, = ya. In Fig. 4, the shape factor,
an indicator of coupling, is plotted as a function of cy,
showing a monotonic increase (for a given ¢,) as the poles
are moved out into the complex plane. Based on the form
of the refractive index profiles themselves, this result is
expected, as a decrease in ¢, is associated with translation
of the optical channel along the positive x axis.

Fig. 3 suggests that for small values of ¢, and c,, the
refractive index profile approximates a sech? x form, suit-
ably scaled and translated a finite distance along the
positive x axis. This is indeed the case, and such profiles

(developed from a slightly different perspective) are taken
up in the next section.

Resr_{(ia) = ia

C. Truncated Refractive Index Profile Waveguides

We now consider the family of single-mode refractive
index profiles based on truncated versions of the potential

v,(x) = —4b% sech? by2 x, (69)
parameterized by the positive scaling constant b. Poten-
tials of this form dre single mode with a bound state
cigenvalue k =ibvV2. Eq. (69) is representative of a
smooth function which decays relatively rapidly for large
x|, making it a suitable refractive index profile for wave-
guide design. For the purposes of this paper, a truncation

is a discontinuity imposed upon a smooth potential, at a
point x = x; such that

v(x) =0, (x<x). (70)

Clearly, this creates a cladding region of constant refrac-
tive index
n(x) + N,,

(x <x1)_ (71)
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Fig. 4. Shape factors as a function of ¢; for ¢; = 0.499a (top), and
¢y = 0.25a.

In previous work we completed an extensive analysis of
these potentials from the standpoint of scattering theory,
including the effects of truncations of the potentials to
model core—cover interfaces, considering both single- and
multimode waveguides [8]. In the present paper, we ex-
tend our analysis to include the effects of truncations
upon the coupling coefficient. Although we restrict our-
selves to single-mode waveguides arising from potentials
of the form in (69), coupling between modes in multimode
waveguides follows a similar analysis.

We have previously shown that the transmission coef-
ficient may be written in terms of the Jost solution folk, x)
of the corresponding untruncated potential. In the case of
a single truncation at the point x = x,, the transmission
coefficient takes the particularly simple form

(7Y = 2ike™ [ 1, (k, x)) + ikf, (k, x )17, (72)

whose poles provide the eigenvalues (and corresponding
propagation constants) as a function of x,. Here the
prime denotes differentiation with respect to the spatial

coordinate. Up to this point the results are co

| mpletely
general.

The Jost solutions for potentials v, (x) (69) take the
form

ik — by2

Used in conjunction with (72), the Jost solution provides
an analytic expression for the bound state eigenvalue k,

[
k= E[—b\/?—,tanh bV2x; + bV2 /1 + sech? b\/fxll.

i —
fo(kx) = e‘_kx{z bV2 tanh b\/ix] )

(74)
The ratio
rT(k)  eikx
T = 2 Wk, x) = fle, x)], (79)

combined with (72) and (73), gives the reflection coeffi-
clent

—be* ™ sech? b2 x,

r‘,(k) = (76)
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where k, and k, lic on the positive and negative imagi-
nary axes, respectively, taking the values

%b\/f{—t‘ + \/(1 + sech? bV2 x, ) >,

t, = tanh by2x,. (77)
When (72) is reduced, the transmission coefficient has the
simple form
2k(k + iby2)

T —
tT(k) = U~k )0k~ Ky (78)

The shape factor of the multilayer planar waveguide cou-

pler can be conveniently expressed as a function of the
truncation point,

be*s*1 sech? by2 x,

FT = : (79)
\/2(1 + sech? bV2 x,)

In Fig. 5 we plot the shape factor, along with 2k,/i, as a
function of the truncation point x,. For comparison, we

have included the magnitude of the area under the poten-
tial

—4p
lAl = —\/—2—[1 — tanh bﬁxl], (80)

which is also a monotonically decreasing function of x,. It
is interesting to note that the decrease in the shape factor
more closely parallels the behavior of the area for a larger
interval of x; than it does the eigenvalue itself.

In Section III we emphasized that the well-known cou-
pled-mode electric field is effectively a two-mode solution
for the composite double-well system -representing the
coupled waveguides. For two reasons, it is appropriate to
follow up on the implications of (32). First, scattering
theory provides a straightforward way to evaluate eigen-
values of a composite structure consisting of two nonover-
lapping potentials, and second, it provides further verifi-
cation that scattering analysis of the coupled-mode
problem is consistent with known results.

Starting from first principles, it is straightforward to

‘show that the transmission coefficient of the composite

potential (see Fig. 2) takes the form [9]

(k) = t“Ck)eR (k) i RUD D"

m=0

1
= (LU R | s
= tL (k) (")(1 —rf(mri(k))' w

The scattering data in this expression applies to the po-
tentials v;(x) and vg(x). From this point we will reduce
this general result to encompass the special case of two
“mirror-image” single-mode truncated potentials sepa-
rated by a distance 2d (i.e., dg = —d, = d) for which the
scattering coefficients take the form of fractions made up
of arbitrary k-dependent functions, the numerator and

(x10T)

2

S I L 2
-8 -6 -a

PRI e -7
) 5 ﬂx!(xlO)

Fig. 5. From top to bottom: the area under the potential, the shape

factor, and 2kp /i as a function of the truncation point.

denominator denoted with the appropriate subscripts n
and d:

r2k) = rt(k) = e"z"dr"(hk)

0 82)
and
L1\ _ R _ t,(k) a
to(k) = t*(k) = “td(k)’ (83)

so that the composite transmission coefficient can be
written

) = =)
f B ri(k) — e”kdr}(k) ) (84)

It is clear that for sufficiently large separations, the trans-
mission coefficient will exhibit two closely spaced bound
state eigenvalues lying close to the original single eigen-

value. As we mentioned, the corresponding propagation
constants,

B*= B+ AB*
B =p-Ap, 85)

which are roots of the denominator of (84), provide an
approximation to the coupling coefficient (see [1])

K=AB"=AB", (86)

provided that the waveguides are Weakly coupled.
Consider the truncated single-mode potential of (69),

— 2 2
0a() ={ 4b%sech? by2x, x> 0, 7

0, x <0,

whose reflection coefficient

TR pt (8)
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follows directly from (76) with x, = 0. There is a single
bound state eigenvalue at & = ib. The composite struc-
ture, consisting of this potential shifted a distance d along
the +x direction, and its mirror image, each with reflec-
tion coefficients (see (14))

2

k% + b*’

has eigenvalues k*= /g £% — k252 given by the roots of
the denominator of (84).

An approximation to the shape factor of the single-mode
potential is found by inverting (47):

_TBBbSA B+ —~ ;bqeb.\'A B— ,

rE(k) = rR(k) = g2ikd (89)

F = (90)
where s = 2d. As the separation is increased, a conver-
gence of B* and B~ towards B is expected, leading to
better approximations to the shape factor.

In Table I we list the eigenvalues and corresponding

approximate values of the shape factor (from (S0)) against
the exact value

Im Res r2(ib) =

NN

= 1.889 x 10°. 1

(We have taken b = 3.778 X 10°). As d is increased, the
expected rapid convergence to the correct shape factor is
readily apparent. Physically, this is the result of the in-
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TABLE I
EIGENVALUES AND CORRESPONDING SHAPE FACTORS
(90) FOR THREE VALUES OF SEPARATION

s (pm) eigenvalues (x10°) shape factors {x 10%)
— |
i = CECON ey
corresponding corresponding
o Aft to Af~
i 3733 3.819 1.977 1812
2 31 3779 1.893 1.885
13 3778 3178 1.889 1.889
TABLE 1I

REPRESENTATIVE VALUES OF THE SHAPE FACTOR FOR THE THREE
TYPES OF REFRACTIVE INDEX PROFILE CONSIDERED IN THIS PAPER

Type of profile Shape factor
Step Index 2.26 x 10°
Truncated Sech? ax

189 —-7.56 x 106
15 — 9.0 x 0%

The step index profile has a width of 0.94 xm and a core refractive
index n, = 3.1

High -V Profile

replacing the explicit calculation of field-dependent inter-
action integrals with straightforward expressions involving
the residues of the scattering data, the method provides

further motivation to employ inverse scattering methods
in the design of optical devices.

APPENDIX
The matrix 4(x): [0 1 0 0 0 0 )

0 o0 fGn)  alel + ¢2) 0 0

0 0 0 0 f(n) a(c} + c2)

1 —X e~ h* em* e~ M e
d d d d ’ 92)

0 -1 Ee"hx — X Ee—’qz*" ——pM*
d* d* d? d?

00 e e g e
creasing accuracy of the weak-coupling mode as the wave- where

guides are separated. Representative values of shape fac-
tor for all the three types of profiles discussed here are
shown in Table II for comparison.

Aside from the general analytic interest of this approxi-
mation, it may be advantageous to apply it in situations
where the residue of the refiection coefficient is compli-
cated or difficult to calculate. In our experience, this is
often the case for refractive index profiles incorporating
two truncations (to simulate two cladding regions), for
which the residues undergo extremely rapid variations in

the vicinity of the bound state eigenvalues. Certainly,
further work is needed in this area.

V. ConcLusion
Coupling in multilayer waveguide structures is studied
here using scattering techniques. As inverse methods find
wider applications in waveguide design, the scattering
representation of transverse coupled modes developed
here will be useful in the design of multilayer devices. By

fn) = (g, + ik Y, + iky)(m,, + iky), m=1,2.

(93)
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Abstract. Application of inverse scattering theory for designing planar optical waveguides
possessing prescribed propagation constants for light with a given frequency is well known.
However, waveguides designed using such a method, in general, will not be able to transmit
light at other frequencies with the same propagation constant. In order to overcome this
difficulty, the design problem for Te modes is transformed and reformulated to an equivalent
inverse problem for Schrddinger's equation. Then using inverse scattering theory, the potential
as a function of a modified spatia!l variable is recovered. Next the important problem of
finding an explicit relation between the actual spatial variable and the modified spatial
variable is solved and a systematic procedure is developed for designing waveguides which

have the same propagation constant for different light frequencies. Existence and uniqueness
questions are studied and some model calculations are presented.

1. Introduction

Proper values of propagation constants are very important in the design of waveguides,
since they govern the spatial and temporal characteristics of the signals transmitted in
waveguides. Systematic procedures for designing waveguides with prescribed propagation
constants appeal to the existing inverse scattering theories {1-5], which were originally
developed for the inverse problems in quantum mechanics. In st

andard applications of
inverse scattering theories for designing optical waveguides [6-9],

we make use of the fact
that at a fixed frequency Maxwell’s equations governing the light propagation in a

waveguide can be transformed to Schrédinger’s equation with an energy-

potential. In this equivalent quantum mechanical inverse problem, the bound states
energies are associated with the prescribed propagation constants, and the potential is
related to the refractive index of the designed waveguide.

The systematic procedures for designing waveguides as outlined above (6-9] are
applicable as long as we are interested in light propagation with a prescribed propagation
constant at a single frequency through the designed waveguide. However, such a
waveguide in general will not have the designed propagation constants for light with
frequencies other than the specific frequency used in the design of the waveguide.
Waveguides, which have the same propagation constants for different light frequencies,

independent

0266-5611/93/010069 + 12307.50 © 1993 10OP Publishing Ltd
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have important applications in optics, such as in harmonic generation, wave mixing,
parametric amplification, and multiplexing [10-12].

The need for developing a systematic method to desi

gn waveguides having the same
propagation constant for different li

ght frequencies has motivated us, in this preliminary
study, to design planar optical waveguides that have the same propagation constant for

TE modes at different frequencies. We achieve this objective by showing that Maxwell’s
equations can be related to Schradinger’s equation with an energy-dependent potential
and that the requirement for the waveguide to have the same propagation constant for
m different frequencies is shown to be equivalent to the corresponding energy-dependent
potential supporting m bound states of specified values. Having reduced the problem to
an inverse Schrédinger problem for energy-dependent potentials, we then subject this
Schrédinger equation to a transformation {13-19] which reduces the inversion to a
Schrédinger inverse problem for an energy-independent potential. The modified inversion
problem is then solved by using the existing Schrodinger inverse scattering methods in
one dimension [1-5]. However, since the equivalent inverse Schrédinger problem is
formulated with respect to a modified spatial variable and not the actual spatial variable,
the energy independent potential found will not be of any use unless the connection
between the actual spatial variable and the modified spatial variable is established. We
study this important problem in detail and find an explicit relation between the actual
and the modified variable, which then enables us to make use of the energy independent
potential and develop a systematic and practical procedure to design waveguides which
have the same propagation constant for different light frequencies.

In section 2 we review the problem of clectromagnetic wave propagation in a planar
waveguide. Section 3 deals with transforming Maxwell’s equations to Schrédinger’s
equation with an energy-independent potential and developing a systematic method to
design a waveguide which has the same propagation constant for different frequencies.
In section 4 examples of practical interest in waveguide design are presented. We find
that the proposed method enables us to design waveguides which have the same
propagation constant for any finite number of different light frequencies. The procedure
leads to solutions which depend on infinitely many arbitrary parameters. Of course, this

non-uniqueness can be further manipulated, enabling the designed waveguide to have
other desirable properties.

2. Statement of the problem

Propagation of electromagnetic waves in a planar optical waveguide, with refractive

index varying continuously only in one direction say x, is analyzed by assuming that the
electric, E, and magnetic, H, fields have the following forms [6}:

E (x, y,z,0) = E,(X)Ci(""_ﬁ’)

(2.1)
H.(x,y,z,1) = H, (x)e'«~# 2.2)
where x, y, and z are the cartesian coordinates with z along the axis of the waveguide,
tis time, « represents the components of a vector in the x, y, or z directions, w is the light
frequency, and B is the propagation constant. Subsitution of (2.1) and (2.2) in Maxwell’s
equations lead to the following equation [6].

15400 + 1P Ge, kol — 10 = 0 .3
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Inverse scattering theory for waveguide design 71
for the TE modes. In (2.3) the positive function n(x, ky) is the refractive index, k, = w/ec,
with ¢ being the speed of light in vacuum, and Y(x) is the field function associated with
the electromagnetic fields under consideration. The field function Y(x) is to decay fast
enough, as |x| increases, so that the field function is associated with finite energy which
is mostly confined to the inside of the waveguide.

It is well known that the differential equatio (2.3) with the above condition can have
solution only for certain values of §, which are called the eigenvalues of the differential
equation, and for the problem at hand correspond to different possible propagation
constants of the waveguide. Therefore in the waveguide design problem at a fixed
frequency, one only need to find n(x, k,) which is associated with the desired propagation
constants f§ for the specified frequency. A standard procedure to solve this design
problem is to appeal to the theory of inverse scattering which was first developed in
quantum mechanics, where one has to find the potential from the spectral data of the
associated Schrédinger equation [1-5]. In order to be able to make use of the well
developed methods of inverse scattering theory in quantum mechanics [1-5], one
transforms (2.3) into a Schrddinger differential equation form

2

d
2 VO + 1K — KV (x, ko) (x) = 0

(2.4)

where
i = nl, (ko) — 2:5)
V(x, ko) = nk (ko) — n*(x, ky) (2.6)

with 7., (k,) being the refraction index for |x] = o0.

Having transformed the Helmholtz equation (2.3) into a Schrédinger equation (2.4),
one notes that the design problem of optical waveguide, that is finding the index of
refraction n(x, ko) which gives us the desired propagation constant f for the specified ks,
is reduced to an inverse scattering problem in quantum mechanics, where the potential
kg V(x, ky) is to be deduced from the information on the bound states and the reflection

coefficients. In this quantum mechanical formulation of the problem, one refers to k? as

the energy of the system and the eigenvalues as the bound state e

nergies, which we will
denote by —9?

. Of course as can be seen from (2.5) these binding energies, y?, are related
to the desired propagation constants through the relation

V=B - nl(ko)k. Q.7

From (2.7) it follows that specification of the propagation constant f§ and frequency

w, will give us the needed bound state energy information for the analogue quantum

mechanical problem. Having established the connection between the optical waveguide

and the inverse quantum mechanical problem, it is then straightforward to use existing

methods [5-7] to find the desired potential k3 V(x, k,) associated with the bound states

and the reflection coefficients and then find the required refractive index n(x, k,) from

V(x, ko) using (2.6). However, this standard approach is useful for designing waveguides

associated with only one fixed frequency. That is, since the inversion potential kB V(x, ky)
depends on the frequency w, if we change w, the potential will change resulting in

change
of the binding energy y2. In other words the waveguide designed will not have the desired

propagation constant § at other frequencies. Therefore if we are interested in designing
waveguides which have the same propagation constant for different frequencies, the
method as stated above is not able to provide us with the desired profile. We will show
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in the next section that it is still possible to use the results of inverse scattering theory

[1-5] to design waveguides which can have the same propagation constant for different
light frequencies.

Before concluding this section, let use note that the refractive index n(x, ko) in general
is a function of both the spatial variable x and also the wavenumbe

r ky. The dependence
of the refractive index on k,

or the frequency of the light propagating through the
waveguide is a very interesting and important topic. However, in this preliminary study,

for the sake of simplicity in presentation, we restrict the study to refractive indexes which

are twice differentiable with respect to x and have the following type of dependence on
ky and x:

n(x, ko) = 1, (ko)n(x) (2.8)
where 7(x) is a function of x only and, which tends to 1 as [x| tends to infinity. Since
n,(ky) is associated with the refractive index of the cladding, it will be assumed that

n,, (ko) is an arbitrary but known function of ko. In other words, in this study we make
the assumption that the refractive index is made up of a known

multiplied by a positive function 5(x) which is a function of x o
need to restrict (x) to class of function which satisfy the foll

positive function n, (k,),
aly. In this study we also
owing inequality:
+ o0

J n(x) — l|dx < .

2.9

The design problem to be presented in section 3 is to develo

) P a systematic procedure for
finding the frequency-

independent function 5(x) corresponding to a refractive index

which will allow different light frequencies to propagate through the waveguide with the
same propagation constant f3.

3. The inversion procedure

As was shown in the previous section, our design problem is to develop a systematic
procedure to design waveguides which_have the same propagation constant f for all
different light frequencies of interest. In order to be able to restate this design specification
in the equivalent inverse quantum mechanical problem in a more transparent fashion,
let us rewrite the differential equation (2.4) in the following manner:

2

d o
T2 V) + (K = KV (x) = ()l(x) = 0

(3.1)
where

N(x) = Vix, ko) [nl, (k) = 1 — p*(x) (3.2)

Va(x) = B Vi (x). (3.3)

It should be remembered that throughout the discussion, the propagation constant
B is fixed but the frequency w can take different values, o, withi=1,2..
is the same as (2.3), the eigenvalues of (3.1) will be the same as those of (2.3) and will
be related to frequency w and propagation constant § through (2.5). However, the
advantage of writing (2.3) in the form of (3.1) is the fact that (3.1) clearly shows that our

.,m. Since (3.1)

design problem is equivalent to an energy-dependent Schrédinger inverse problem and
we are interested in finding ¥ (x) and V2(x) when binding energies of (3.1) are specified
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according to following equation:

V=B — 2 (ko) i=12...,m 3-4)

where k,; = w,/c. Equation (3.4) is nothing but (2.7), and it is only written to emphasize
the fact that in the problem of interest we are not given a single bound state energy, as
may be inadvertently deduced from the fact that we only have one propagation constant,
but in fact we are given m bound states energies. These binding energies can be easily
computed from (3.4) by substituting the desired different values of frequency w,
which we would like to propagate through the waveguide with the same propagation
constant f.

Equation (3.1) as it stands is not in the standard Schrodinger equation form and
therefore existing inversion methods for energy-independent potentials cannot be directly
applied. However, similar equations have been dealt with when one tries to solve inverse
problems for angular-momentum-dependent potentials [13-14] and wave equations in

one dimension [15-19]. Motivated by these results, let us then transform our independent
variable x to p, through the following relation:

p(x) = j &t STV, = f n(0)dt.

In view of the fact that 5(x) is a positive function, the above-defined mapping is
one-to-one and the inverse mapping exists. This allows us to write the quantities of
interest as either functions of x or as functions of p, depending on which representation

is more suitable for solving the inversion problem. With this observation in mind let us
define a modified field function through the relation

D(x) = Y (x)/o(x)

(3.5)

(3.6)
with

a(x) = /1/n(x).

\ (3.7

Changing variable in (3.1) from x to p and making use of (3.6) one can rewrite 3.1
in the following form:

2
dd—pz (o) + 2 — W(p)d(p) = 0 (3.8)

where

W0 = g 10 |2ion [ 76 i1 - 11 - vy, 69)

In (3.9) ¢(p) and 7i(p) are the field function ¢(x) and the refractive index n(x), written
as functions of p, respectively.

The advantage of working with (3.8) instead of (3.1) is clear. Equation (3.8) is the
Schrédinger equation for the energy-independent potentials, whose inverse problem is
well studied. Furthermore, let us note that if ¢ is an eigenfunction of (3.8), then the
associated field function ¢ is also an eigenfunction of (3.1). In other words the eigen-
values of the two equations are the same and therefore the design problem is reduced to
finding W(p) with bound state energies specified by (3.4). This is the classical inverse
quantum mechanical problem and the solution to it is well known {1-6]. The only point
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that we need to emphasize is that the solution is not unique and even if we specify not
only the bound state energies but also the refiection coefficients, still the inversion result
we depend on m arbitrary parameters, which in the design problem could be used to our
advantage. However, for the moment let us assume that a potential W(p) associated with
the given bound states has been obtained and the refractive index ii(p) solution of the
nonlinear differential equation (3.9) with the boundary conditions

|}|im fi(p) = 1 3.10)
has been found as a function of the intermediate variable p- Then the only remaining
problem is to find the refractive index as a function of the spatial variable x, when the

refractive index as a function of p is known. In order to achieve this objective we make
use of (3.5) to deduce the following relation:

? dt
x=F(p)=L m 3.1

Now since #i(p) is a known function, equation (3.11) can be used to find x as function
of p. In other words the one-to-one function F(p) can be computed and its inverse F~'(x)
can also be found. Noting that p = F~!(x), we are then in a position to find g(x) =
fi(F~'(x)). By construction the so-designed waveguide will have the same propagation
constant § for all light frequencies w;, with i = 1,2,...,m

In principle the above procedure enables us to design waveguides with the same
propagation constants § for different frequencies provided that we can find #i(p). In order
to show the existence of the solution to (3.9) and develop a practical method for finding
the solutions, we note that Berryman and Greene (18], in dealing with inverse problems
for elastic waves, have shown that the impedance can be either recovered directly by
solving a linear second-order differential equation, which can be regarded as the
analogue of (3.9), or indirectly by working with the wavefunction associated with zero
frequency. Motivated by this result [18], let us study the wavefunctions, solutions to (3.1)

and (3.8), at zero frequency which corresponds to k> = — 2. We note that when @ = 0
equation (3.1) simplifies to the following equation:

2

T3 — P =0 (3.12)
with e*#* being its two fundamental solutions. Let us also denote ¢ + (p) as the solutions
to (3.8) for k* = — B? with asymptotic behaviours of the form e for p tending to F oo,
respectively. We should note that ¢ +(p) are linearly independent. Otherwise, we are
forced to accept that — B is an eigenvalue of (3.8). However, this is not the case since
we are assuming that the potential W(p) is chosen in such a way that (3.8) has eigenvalues
— ¢ as given by (3.9). Also we assume W(p) is such that the solution ¢ +(p) to (3.8) exist

for all real values of p, and the associated function n(x) satisfies (2.9). Having defined the
desired solutions to (3.1) and (3.8) for k2 = — B2, we then make use of the relation (3.6)

to find
¢, (0) = fii(p) A et (3.13)

where A, = exp(+ B [ [7(x) — 1]dx). It should be noticed that (3.13) is the analogue of
equation (40) of Berryman and Greene [18], however, in order for (3.13) to be of practical
use we need to eliminate its dependence on x by taking the derivative of (3.13) with

80
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&

respect to p. Making use of the existing relation between p and x as given by (3.11), we
obtain

d d
i $:(p) = l:& f(p) £ 213]5 +(0) [27(p)] ™ (3.14)

which can be viewed as two linear first-order differential equations satisfied by fi(p). The
solution to (3.14) can be written as

() = 2% () fés S0 dr (3.15)

or

i) =265.0) [ 320 (3.16

It should be noted that if 7j(p) defined by (3.15) becomes different from 1(p) as defined
by (3.16), then from equations (3.13) and (3.14) one is forced to accept that the linear
second-order differential equation (3.8) has more than two linearly independent
solutions. Of course this not being the case, proves that the refractive index n(p) as
defined by (3.15) or (3.16) are identical and one can use either representation to compute
the refractive index. Also, since we are finding the refractive index in such a roundabout
way, one is justified in asking whether this refractive index actually satisfies (3.9).
Performing the necessary operations, it is very easy to verify that indeed #i(p) as defined
by (3.15) or (3.16) satisfies (3.9). Furthermore, using a similar proof to that developed
to show (3.15) and (3.16) lead to the same refractive index, we can conclude that the
solution to (3.9), satisfying the boundary conditions specified by (3.10), is unique and is
given by (3.15) or (3.16).

Positivity of 7j(p) can be deducted from (3.13), (3.15) or (3.16). Equations (3.15) and
(3.16) show that #(p) is non-negative. To show positivity of fj(p), let us assume that there
exist a point p, such that #j(p,) = 0. Then (3.13) will imply that & . (o) = 0. From this
information we can deduce that the Wronskian of ¢, (p) and § _(p) is ®qual to zero. In
other words the solutions $i(p) of (3.8) are linearly dependent. Then we appeal to the
fact that fﬁi(p) are linearly independent and conclude that the point po such that
fi(pe) = 0 does not exist and 7(p) is a positive function.

The proposed method for finding the refractive index #(p), seems to have replaced the
need for finding the solution to the nonlinear boundary value problem as given by (3.9)
by the need to find the solution to the linear equation (3.8) for a special value of the
energy k. Although this by itselfis a great simplification, it should be noted that the gain
is even greater when we remember that any standard inversion procedure which we use
to find W(p) will also be able to give as the wavefunction for different k2 values without
having to directly solve the associated Schrédinger equation. In other words the functions
& . (p) needed for calculation of 1j(p) can be easily found and we will not need to appeal
to numerical methods to solve the linear differential equation (3.8) for k2 = — g2,

Furthermore, the solution given in the form of (3.15) and (3.16) enable us to easily
integrate (3.11) and find the dependence of t
variable p:

he spatial variable x on the intermediate

x = ;—ﬁl 1:{ Lm &;z(z)dz]Uom &;Z(z)dz]_l} 3.7
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or

x= flﬁ In {[ Kw $Zz(l)dt] Uow $Zz(t)dt]_l } (3.13)

Again the two representations of x as given by (3.17) and (3.18) are equivalent, and can
be used to relate the spatial variable x to the intermediate variable p.

We conclude this section by noting that the proposed procedure is able to give us a
practical method for designing waveguides which have the same propagation constant
for different light frequencies. The procedure does not lead to a unique solution and this
of course is of practical importance since it enables us to design waveguides having
further desirable properties. The sources of non-uniqueness are due to the fact that in
this design problem the reflection coefficients are not specified and can be chosen
arbitrarily and, furthermore, for each required bound state we also have a normalization
parameter which is arbitrary. In order to illustrate the procedure in more detail and see

some of the effects of the existing arbitrariness in the procedure, in section 4 we present
examples which are also of practical interest in waveguide design.

4. Examples

In this section we study the design of a waveguide which allows two frequencies o, and
w, to propagate with the same propagation constant B. Following the procedure

developed in section 3 we first use (3.4) to define the bound state energies associated with
this problem.

}’% = ﬁz - nio(km)k%:

“.n
)’% = ﬂz - nﬁo(koz)k%)z

4.2)
where n,, (ko) and n, (ky,) are the refractive index of the cladding at the frequencies w,
and w,, and ko = @, [c and kg, = @, /c. Having defined the desired bound state energies,

we are now ready to appeal to the well known results of Kay and Moses [20] to find the
bound state wavefunctions ¢,(p) and &.(p) and the associated potential W(p):

3 () = — 4,e"” . A Ay (v — Yz)e(zhﬂl)”
(p) =

AP) T 2n0n 180 (4-3)
_ AT A Ay, — 72)6(2“ e
L ¥ S v (@4)
and
d
W) = 2 B0 + Ba(o)e™) @.5)
where

A(p) - Alclhﬂ . Azezhﬂ . AIAZ(‘Yl _ ,yz)Zez(Y|+)'z)P

(4.6)
2y, 2y, 70+ 1)
and 4, and 4, are arbitrary positive constants.
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x[pm]

Figure 1. Plot of x = F(p) as defined by
(3.11). The solid line corresponds to
A, = A, = 2 and the doted line is associated
with 4, =4 and 4,=8. In all cases
B =60611um™", n_(ky) = n, = 1.4850,
kqy =2.0270 um~" and ky, = 4.0537 um~".

Plpm]

Having found the potential and the bound state wavefunctions we are then in a
position to use equation (2.1) of Kay and Moses [20] to find the needed wavefunctions
& . (p) for k? = — p? without having to solve the differential equation (3.8) directly:

R &l(ﬂ)enp ‘%2(/’)672‘,] A
$+(P)-L1+ vt gt oy ¢’ 4.7

and

It’s easy to verify that the so-defined ¢ + (p) have the desired asymptotic behaviours and
are solutions to (3.8). Therefore they can be used in (3.15) or (3.16) and (3.17) or (3.18)
to find the refractive index and the spatial variable x as a function of the intermediate
varaible p numerically. Having found #(p) and x = F(p), the procedure is then complete
and the refractive index #(x) can be numerically obtained. The result of the numerical
computations are presented for different values of 4,, 4, and different light frequencies
in figures 1-4. In these examples we have assumed that the refractive index n(x, ky) as
defined by (2.8) is independent of wavenumber k, and can be written as n(x)n,,.

It should be emphasized that the examples presented here are only for the sake of
demonstrating the proposed method. Practical implementation of this technique and
actual fabrication of such waveguides need further study. Also, for the sake of simplicity
in presentation, we have only used reflectionless potentials in these examples. However,

sl
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Figure 2. Graph of the refractive index
n(x, ky) = n(x)n,, as defined by (2.8) and

L Y o0 s (3.15). Symbols and the constants are the
same as in figure 1.
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in actual applications of the method, we should remember that any potential which has
the proper bound state energies, including those which are not reflectionless, can be used.
Such potentials can be found by appealing to the Faddeev-Marchenko method [5, 21].

d
W(p) =2 a K(p, p)

4.9)
where

Ko+D+Mp.D+ | KoOME+DdE=0  (<p  @10)
and

M(p) = (1/27) j: dk R(k)e* + ‘_‘; A, @.11)

with R(k) being the reflection coefficient. Having found W(p), one can apply the
proposed method to find the refractive index associated with potentials which are not

reflectionless. Use of potentials with R(k) # 0 may be preferable, if such potentials lead
to waveguides with refractive indexes which are easier to fabricate.

The above equations show that in order to find W(p) uniquely, we not only need the
bound state information and the normalization constants 4,, but also we need to know
the reflection coefficients R(k) for all real values of k. In view of the fact that in fibre

optics design usually only the value of propagation constants are specified and R(k) is

1

n{x,ks)

Figure 4. Graph of the refractive
index n(x,k,) = n(x)n_,. Symbols
and the constants are the same as in
figure 3.
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not given, it then follows that such a design problem involves a great degree of non-
uniqueness. A very interesting question that was raised by the referees is with regard to
the nature of this non-uniqueness and its physical implications. Let us study this question
by noting that in order to remove this non-uniqueness, we need to know R(k) for all real
values k. In view of the definition of k as given by (2.5), we note that the wavevectors
of interest, k = (k,, k,), will fall into one of the following two categories. Case (a) is when
B is real and n,(ko)k; > f?, resulting in both components of k to be real. That is
ke =k = + [n%,(ko)kg — p*1'"™ and k, = B. Case (b) corresponds to the evanescent waves
[22], where § = k, = —if is purely imaginary but k, = k = + [r (k)i + B2]"2 is still
real. From the above analysis, it also follows that in case (a) for large values of |x| the
wave will behave like a free wave and therefore from the point of view of geometric optics
it would correspond to refracted rays {22]. This analysis shows that data on R(k) are
associated with waves which are significant only in the spatial transient region and their
powers are significantly diminished in the spatial steady-state region [22]. The only waves
that will have significant power for large values of z, that is in the spatial steady-state
region, are the bound waves [22]. Of course propagation constants of such waves, §;,
have played a very important role in our design procedure. This observation clarifies the
nature of the existing non-uniqueness in our design problem. It shows that the main
difference between the different waveguides which can be deduced from the proposed
method is in their radiation properties in the spatial transient region, which is usually a
short distance from the source. However, for most of the length of the proposed
waveguides, that is in the spatial steady-state region, waves associated with data R(k) will
not be significant and only the bound waves will be present. In other words, in the spatial
steady-state region, all of the proposed waveguides will perform similarly as far as the
bound waves are concerned. It should again be emphasized that although we are mainly
interested in the propagation of the bound waves, the existing non-uniqueness can play
an important role; such as the ease of fabrication of the waveguide or coupling of energy
from the source to the waveguide. Of course such a study is beyond the scope of this

paper but it deserves further consideration both for planar waveguides and circular
waveguides [6], where the same type of non-uniqueness also exists.
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We have formulated a matrix eigenvalu

¢ problem for cylindrical optical fibers from a set of finite difference equations. Numer-
ical solution of this problem yields the propagation constants for

1. Introduction

Wave propagation in optical fibers has been ana-
lyzed using various methods. We will be using a fi-
nite difference method. Other methods proposed to
find the propagation constants of guided modes in
optical fibers with arbitrary refractive index profiles
include the WKBJ method, variational method,
power series expansion method, staircase approxi-
mation method, and finite element method. .

The WKBJ method [1,2] is a geometrical optics
approximation that works whenever the refractive
index of fiber varies only slightly over distances of
the order of the optical wavelength and are appli-
cable only to thick fibers in which many modes can
propagate. For those fibers in which only a few moElp_s
propagate, the error of the WKBJ method increases
intolerably and this method is not applicable to
modes near cutoff. Besides, the effect of an index
valley at the core-cladding boundary, which plays an
important role in reducing multimode dispersion,
cannot be treated by the ordinary WKBJ method. In

the variational method the scalar wave equation is
converted into a variational problem subject to the
given boundary conditions. The variational problem
is solved either by using the Rayleigh-Ritz method
{31 or perturbation method [4]. In the Rayleigh-
Ritz method the eigenfunction is expressed in terms
of a set of orthogonal functions and the variational
function is minimized. The disadvantage is that we
need to assume a trial function [5]. In the pertur-
bation method of analysis, the computation of the
propagation characteristics for an arbitrary profile is
done by correcting the solution for a uniform core
fiber considering the difference in the profile as the
perturbation term. .

The power series expansion method (6] consists
of expressing the refractive index for the field term
by term. This method is useful only for cases in which
the refractive index profile can be expressed by a rel-
atively simple power series. In some cases the series
do not converge and this method is not applicable
(7). In the staircase approximation method (8,91
the refractive index is approximated by an appro-
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priate staircase function. The wave equation is solved
in each stratified layer and the solutions are then
connected at the cylindrical boundaries between these
layers to obtain the proper solution representing the
propagation characteristics. The number of layers
should be infinite in order that the refractive index
profile approaches that of actual fiber profiles, Thus,
the results of the propagation constant will differ from
the actual values when a finite number of layers is
used. A large number of layers requires considerable
computer time and hence in this method the accu-
racy and computer time are traded off.

The fiber problem has been analyzed by Okamato
and Okoshi [10] using a finite element method for-
mulated in the axial fields. The problem with this
method is that it suffers from spurious modes when
the finite elements are not carefully chosen [11].
Lenahan [12] has formulated a matrix eigenvalue
problem from a finite element analysis using the
Galerkin weighted residual method. To achieve
computational efficiency, a piecewise lineag approx--
imation to the solution function must be used.

In this paper we present an efficient finite differ-
ence method to find the propagation constants of op-
tical fibers with arbitrary refractive index profiles.
The method does not involve a search procedure to
find the propagation constants, nor does it require
explicitly evaluating Bessel and modified Bessel
functions, as was the case in the earlier works on fi-
nite difference analysis of optical fibers [13,14]. We
construct a matrix equation from a set of simulta-
neous finite difference equations governing the
propagation in an optical fiber and solve for the ej-
genvalues to obtain the propagation constants. In
sect. 2 we give the mathematical formulation of the
discretized differential equation at various grid points
in the radial direction and the construction of a ma-
trix equation incorporating the boundary conditions
at the core-cladding interface and the jacket. Ex-.
tending our method, which is formulated for a-in-
dex fibers, to arbitrary refractive index profiles is-
covered in sect. 3. In sect. 4 we discuss the numerical
evaluation of propagation constants and present re-
sults. This includes a discussion of the convergence
and stability of the method along with the effect of
the number of grid points on the computation, and
the effects of finite cladding width on dispersion
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characteristics. Our conclusions are given in sect. 5.

2. Mathematical formulation

The optical fibers considered here are inhomoge-
neous dielectric cylinders of radius a called the “core”
surrounded by a homogeneous refractive index me-
dium called the “cladding”. The cladding, in turn, is
encased in a highly lossy material called the jacket.
A representative fiber cross-section is shown in fig. 1.

The refractive index profile of the fiber, called an
o-index profile, is given by

n*(ry=ni{1-2pd(r/a)*], forO<r<a,

=n?{1-24], fqrr>a. : (1)

Here, n, is the maximum refractive index of the core,
4 is the relative refractive index difference between
the core axis and cladding, p a parameter represent-
ing the refractive index step or valley at the core-
cladding boundary. A smooth continuation at the
core—cladding boundary, the presence of a step, and
that of a valley are expressed by p=1, p<1, andp>1,
respectively. {a{aeR]} is a profile parameter. Some
examples of a-index profiles are shown in fig. 2.
The propagation characteristics of an optical fiber

are governed by the scalar Helmholtz differential
equation {15]

Jacket

Fig. 1. Optical fiber showing grid points used in the example.
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Fig. 2. Examples of a-index profiles. a=oo yiclds a step index, while ar=2 yields the parabolic index. Values of p control the character-
istics of the interface between the core and the cladding; p<1 resultsina step at the interface, p> 1 yields a valley.

dy  1dy 5 2 gy M*
7 + r3+(n (Nk*-p*— p w=0. 2)

This scalar wave equation is the simplification of the
exact vector wave equation under the assumption
that Vn/n is small, which includes the “small index
gradient” and “weakly guiding approximations”
{16,17]. In the above equation w(r) is the frans-
verse field function which may denote either the di-
electric field or the magnetic field, r is the radial co-
ordinate, n(r) is the radial refractive index profile,
k is the vacuum wave number, 8 is the propagation

constant which is to be computed, and m is a mode
parameter given by

m=1, for TE and TM modes (n=0) ,
=n+1, for EH modes (neN), T
=n-1 ,

for HE modes (neN) . (3)

We need to solve the differential equation in order
to compute the propagation constants. From the ro-

tational properties of y the associated boundary con-
dition at the center of the core (r=0) is

form=0,

dy
(dr)r=o =0, )

w(0)=0, form#0.

- (4)
The other boundary condition applied is the ex-
tinction of field at the jacket written as

y/jzckct:l//r=b=0 s (5)

where b is the radius of core and cladding together.

2.1. Transformation to nondimensional form

We need to nondimensionalize the differential

equation for easy computation. This is achieved by
setting

u=yly,, x=rla, (6)
where ¥ is the maximum field amplitude and a is

the radius of the core. Substituting eq. (6) into eq.
(2) we obtain

d®u  1du

2
: E"‘;&"faz(kz”z(xa)—ﬂz_ era?.)u:O‘ (7)
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By including the refractive index distribution given
by eq. (1), the above equation can be rewritten as

%xz—ﬁiii a2<k2n%[1_f(xa)]_/32_x";;)u
=0, (8)
where
f(r)=2pd(r/a)*, O<r<a,
=24, a<sr.

Defining the parameters U and' ¥ as
U=a(k?ni =)'\, W=a(p*~k2n})'",
we can define V, the normalized frequency, as [17]
Vi=U?+ W2=k%a?(n}—n),

(9
and the modified propagation constant, j, as
b ) e

(10)
Then eq. (8) becomes
Tt i (P e - ) uso,
(1
with |
Axy=2pdx*, 0<x<1,
=24, x>1, (12)

2.2. Discretizing the differential equation

When the function u and is derivative are single
valued, finite and continuous functions of x, the first
and the second differentials can be approximated by
third order difference formulas as follows [18]:

du i ~u;

_ ['3'
dx 2h (L )
d? v = 2u
E“zz”_“_h”z# (14)
Here
S ui=u(X), we o =u(xth), w_ =u(x—h),
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h is the width between the grid points and x=ih,

{i=0, 1, 2, ...}. Substituting eqs: (13) and (14) into
(11), and defining

=~ Vi
V= (15)
we get

Uie1 —2Ui+ Uy, + Lt —ui,
h? ih  2h

(/3 Pf(iha) — (h)) =0, (16)

and on rearranging, the equation becomes
i {

[ -4{-3)

m? N

7—) + Vf(iha) -—/3]

e (1 2] o -

For the purpose of illustration, we have chosen six
grid points alang the radial direction as shown in fig.
1. In general, the number of grid points can be any
number not less than four, the minimum necessary
to take care of the boundary conditions. Depending
on whether m=0 or m ¢ 0, the field or its derivative
vanishes at the center of the core. When the deriv-
ative of the field vanishes, uy=u,.

Writing finite difference equations at the grid

points, we obtain the following set of equatlons At
=1,

u, (%ZQ+Vf(lha) [3) +u2(2h32) =0,
(18)
where
=1, m=0,
=0, m#0
At i=2,
(;,132) +u2<8:h"2’ +Vf(2ha) ﬂ) +u3<4h52)
=0. (19)

|
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Ati=3, - (2i+1
Qiiv1= “2) (25)
2ih
=3 gy, (B +Vf(3ha)—f) + ]
Ua\gpz) Tt 942 a)- VTR In order to convert the problem into an eigenvalue
problem, we rewrite eq. (24) as
=0. (20) .
(T—fu=0, (26)
At (=4,
L where I is the identity matrix, and T is a tri-diagonal
u (——7) +u (32_-!—m_2 + Vf(4ha) —[f) +us (—_2> matrix.
*\8h? “\ 16A2 8h? Equation (26) defines an eigenvalue problem. This
-0 (21) means that eq. (26) has a nontrivial solution if and

At =5, since the field goes to zerdat the Jacket,

-9 504+m? . ~
Uy (T()h—z) +us (_2%— +Vf(5ha)—,8> =0.
(22)

Finally, at i=6, again using the boundary condition
that the field goes to zero at the Jjacket,

us=0. (23)

Since the boundary condition in eq. (23) is in-

corporated in eq. (22), we have a system of five
equations.

2.3. Matrix equation formulation

Formulating a matrix equation from the above set
of equations for the convenience of generalization
and easy computation, we obtain

an—f ag

Uy
ay  ayp—f ay _ U
Au= ay; ayx—f  as, _ Us
Qg3 Qu—f 445 ]\ Ua
asy  ass—f Us
=0, (24)
where the matrix elements are defined by
_=Qi-1 .
Qi = 2”12 )
20242m?*—-§ . _ . .
ai.i=’7hz—— +Vf(iha), i=1,
2i24+m? .
=—'_qz—+Vf(zha), t;é.I,

only if fis an eigenvalue [19]. Hence, the required
normalized propagation constants contained in Bare
obtained by finding the eigenvalues of the tri-diag-
onal matrix T. This mathematical formulation can

be generalized to {n|n|eN} grid points in the radial
direction of the fiber without difficulty.

3. Arbitrary profiles, multiple layers, and field
distributions

We have developed this method of analyzing op-
tical fibers using the a-index profile. This is because
the a-index profile is commonly used in the litera-
ture and can represent a large variety of real refrac-
tive index profiles, including the very important step
and parabolic profiles. But our formulation is not
limited to a-index profiles.

To see how to extend the method to arbitrary pro-
files without rederiving a system of finite difference
equations, consider eq. (11). The refractive index
profile is included in this equation through the func-
tion f(x), which is defined in eq. (12). Using f(x),

the refractive index profile of the fiber can be re-
written as

n*(x)=ni{1-f(x)].
Solving for f(x) yields
S(x)=1—-n?*(x)/n?.

(27)

(28)

By generating the discretized fi=f(x;=ih) from
samples of an arbitrary refractive index profile n(x;),
the method we have outlined in this paper can be
used directly on arbitrary profiles, as long as the
“weakly guiding” approximation holds.

Multiple layer waveguides of any number of layers
may be considered special cases of arbitrary refrac-
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tive index profiles. Since we have normalized the fi-
ber core radius, a, to unity, we must explicitly define
which layers comprise the core before using our
method and scale all quantities accordingly.

Since the propagation constant for a mode i, f;, is
uniquely associated with a f, the field distributions
for a propagating mode can be determined from the
eigenvectors « of matrix T (see eq. (26)). Many ei-
genvalue routines will return eigenvectors as well, but
at the cost of greatly increasing the number of
computations.

Useful approximations to the sigenvectors for
propagating modes can be computed by constructing
the tri-diagonal matrix T, subtracting a specific §
from each element of the main diagonal, and solving
for the elements of & using standard techniques from
linear algebra. From the observation that for prop-
agating modes the field will approach zero at the
cladding/jacket boundary, we can set uy, the right-
most element of «, to a very small value (not zero),
and use a simple backsubstitution process to solve
for the rest of the u,. This procedure yields a good

approximation to the field distribution multiplied by
an arbitrary constant.

4. Numerical evaluation, results, and discussion

Although the mathematical formulation of our
method for determining the propagation character-
istics of an optical fiber is couched in terms of matrix
equations, there are special structures that lead to
very efficient numerical implementations. First, since
T is a tri-diagonal matrix, we can use sparse matrix
techniques to reduce storage requirements for T.
Second, since T is a quasi-symmetric tri-diagonal
matrix, we can use a similarity transformation to
convert T into a real, symmetric matrix [20]. Fi-
nally, the eigenvalues of a real, symmetric matrix may

be computed using an efficient O (N 2) algorithm (in'.
our case, the tqli.c routine from ref. [21], which hds.,

an operation count of approximately 30N 2).

Using eqs. (25), we have implemented a pair of
C language programs which compute the normalized
propagation constants for fibers with arbitrary re-

fractive index profiles. We define the normalized
propagation constant as
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U*  kni-p?

= VT en ko (29)
Note that some authors (e.g. Gloge {22]) define a
normalized propagation constant as
b=1-U*Vi=1—y. (30)

One program computes y for all propagating modes
at a specific value of m in eq. (2) over a range of
normalized frequencies V. Another program searches
for the cutoff frequency (V,) of a specific linearly
polarized (LP) mode. Both programs allow all of the

‘parameters in eq. (1) to be varied, as well as the val-

ues of b and N, which are the fiber radius (see fig.
1) and number of grid points in the fiber core,
respectively.

In verifying the performance of our method, we'
have computed the propagation characteristics of step
index and parabolic index fibers over a normalized
frequency range of 0 to 20. These index profiles have
analytical solutions and havé been studied analyti-

cally and numerically by other authors [14,23-26].

Our results agree well with previously published re-
sults, as shown in table 1. Note that for propagating
modes, x must lie between 0 and 1 (j.e. O<y<t).

For comparison with a known case, fig. 3 shows
the dispersion characteristics we have computed for
the step index profile. The plot agrees well with the
analytic results for fibers with infinite cladding. The
small differences between the computed and analytic
cutoff frequencies for each mode are due to the finite
cladding width used in our computations, and the
finite number of grid points across the fiber. The
fundamental mode, which has zero cutoff in the in-
finite cladding case, is extremely sensitive to the
cladding width.

Figures 4, 5, and 6 show our dispersion calcula-
tions for the parabolic index fiber with cladding width
10 times the core width and p= 1.0, 2.0, and 0.75.
These compare favorably with published results (see,
for example, refs. (14,23,26]).

Two factors have a major influence on the results
of our computations: the number of grid points used
across the fiber (which we specify in terms of the
number of points in the core of the fiber), and the
width of the cladding. Figure 7 shows the results of
applying our method to a step index fiber for two LP
modes. For each mode we have calculated the cutoff
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Table 1

Comparison of the cutoff frequencies obtained by the finite difference method w

ith analytical and previous numerical results. Repec 18
the fiber radius, R, is the core radius, and 4 is the percentage difference from

he infinite cladding result. 256 points were used in the
fiber core.
a Mode (m, {) Infinite cladding Normalized cutoff frequency
Reper=10R 0 S (%) Riier=20R o 4§ (%)
{ 1,1 4.38t T 4,391 0.23 4.384 0.07
2 1,1 3.518 3.526 0.23 3.520 0.06
1,2 7.451 1.457 0.08 7.453 0.03
2,1 5.744 5.744 <10-? 5.744 <102
2,2 9.645 9.645 <102 9.645 <102
3t 7848 3 7.848 <1072 7.848 <10-2
4,1 9.904 9.904 <102 9.904 <10~?
3 L1 3.181 3.189 0.3 3.183 0.06
4 1,1 3.000 3.007 0.2 3.002 0.07
S 1,1 2.886 2.894 0.28 2.888 0.07
10 1,1 2.649 2.657 0.30 2.651 0.08
20 1,1 2.527 2.535 0.32 2.529 0.08
o 11 2.405 2413 0.33 2.407 0.08

Normalized Propagation Constant,

Normalized Frequency, V

Fig. 3. Dispersion characteristics of a '§tcp index fiber (=00, 4=0.038). Reper=10R e

v

frequency using from 4 to 256 points in the core, and core increases. The effect of cladding width is also
for fiber radii from 5 to 20 times the core radius. apparent.
From this figure we can see the expected conver-

The effect of the number of grid points in the core
gence on a final result as the number of points in the is two fold. As the number of grid points is increased

the distance between samples of the refractive index
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Normalized Propagation Constant, x

15 20
Normalized Frequency, V

Fig. 4. Dispersion characteristics of a parabolic index fiber (=2, p=1, 4=0.038 ). Reper=10R .

Normalized Propagation Constant,

10 135

Normalized Frequency, V

20

Fig. 5. Dispersion characteristics of a parabolic index fiber (@=2,p=0.75,4=0.038 ). Rapee=10R,
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10

- Normalized Frequency, V

20

Fig. 6. Dispersion characteristics of a parabolic index fiber (=2, p=2,4=0.038). Rgoer=10R o

Normalized Cutoff Frequency Difference

-0.05
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Fiber radius

LPO1

Fiber radius

= 5 X core radius

Fiber cadius

= 10 X core radius

Fiber cadius

= 20 X core cadius
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= 5 X core radius

= 10 X core radius
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Fig. 7. Convergence behavior of computed cutoff frequency with the number of grid points in the fiber core for the LP,, and LP,, modes
of a step index fiber.
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profile is decreased, resulting in a better approxi-
mation of the actual profile. This is especially ap-
parent in profiles with sharp transitions at the core—
cladding interface, such as for a> 1. Cases where
p#1 (seeeq. (1)) are also likely to be poorly mod-
eled by a small number of core sample points. The
effect of reducing the number of sample points in the
core is to apply a “low pass™ spatial filter to the re-
fractive index profile.

Setting the number of points in the core also ef-
fectively applies a filter to the spatial frequency con-
tent of the field distributions calculated for each
mode in the fiber. When computing propagation
constants at higher normalized frequencies, using a
small number of samples may induce errors due to
a form of “aliasing™. These two effects are respon-
sible for the poor results when the number of grid
points in the core is below approximately- 10 for the
modes we have examined.

Using the step index fiber as an example, fig. 8
demonstrates the effects of the number of grid points
by plotting the computed cutoff frequency for modes
LPgy, LP,y, and LP,, for several different grid sizes.
In this figure, each curve is normalized to the value

1.005
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of the cutoff frequency for that mode calculated with
256 points in the core. We can see that for mode LP,,
the cutoff frequency calculated with 8 points in the
core is less than 1.0015 times that computed using
256 points in the core, while for mode LP,, (with a
higher cutoff frequency) we need at least 12 points
in the core for similar results. In general, as the nor-
malized frequency increases, the number of points in
the core must be increased to maintain the accuracy
of the method.

For modes with relatively low cutoff frequencies,
variations in cladding width produce large changes
in the calculated cutoff frequency, V.. Cutoff fre-
quency increases as the cladding width decreases.
This is the expected behavior. Analyses assuming in-
finite cladding width, while adequate for many pur-
poses, fail to account for the increasing importance
of finite cladding width as the normalized frequency
becomes smaller. The fundamental mode, which has
no cutoff frequency when the cladding is infinite,
shows a definite cutoff in real fiber.

Figure 9 shows the effects of cladding width on the
cutoff frequencies of two LP modes in a step index
fiber. In this plot, the curves for each mode are nor-

LP(ol)

1.000

111|ll|||‘||ll

llIl\IllIllllll

LP(02)

[ETQRD]

Relative Cutoff Frequency
o
0
w
T

vy

oqgoflllllllllll!lllllllllll]‘llll
[o]

50 100

1350 200 250 300

No. of Grid Points in the Core

Fig. 8. Effect of the number of grid points on the computed cutoff frequencies of propagating modcs of a step index fiber (LPg,, LPy,,
and LPg,).
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Fig. 9. Effect of cladding width on cutoff frequency for a step index fiber.
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Fig. 10. Field pattemns for the LPg,, LP,,, and LP;; modes of a step index fiber with 4=0.038. These pattemns were computed using
Rebee=10R 5, V=10, and 32 points in the core.
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malized to the cutoff frequency for that mode in the
infinite cladding case. As an example, consider mode
LP,. We can see that the cutoff frequency when the
fiber radius is 10 times the core radius is only about
1.003 times (0.3%) greater than the cutoff frequency
when the fiber radius is 25 times the core radius.
However, when the fiber radius is only § times the
core radius then the cutoff frequency increases to
1.014 times (1.4%) greater than the cutoff frequency
when the fiber radius is 25 times the core radius.

Using the approach outlined in sect. 3, we have
computed the field distributions for three LP modes
in a step index fiber. Figure 10 showsjthe results, with
the field patterns normalized so that the maximum
value in each pattern is one. These results agree well
with the results reported in ref. [15].

5. Conclusions

We know that when 4 is small in an optical fiber,
the scalar approximation yields results that are very
close to the exact vector formulation. Even for large
differences between the core and cladding refractive
indexes, optimum single-mode fiber parameters ob-
tained from the scalar approximation differ negli-
gibly from those obtained using the exact formula-
tion [27].

We have developed a method to evaluate the prop-
agation constants by transforming the scalar wave
equation into a set of finite difference equations and
then converting into a matrix eigenvalue problem.
The method does not involve a search procedure to
find the propagation constants, or the explicit eval-
uation of Bessel and modified Bessel functions, which
is time consuming, as was the case in earlier works.

We have demonstrated the convergence of the
method and the dependence of the rate of conver-
gence on the number of grid points. The method is
elegant, stable, straight forward, is applicable to ar-
bitrary index profiles, and is accurate. We have also_.
explored and established the effects of finite clad-

ding width on the dispersion characteristics of op-’

tical fiber.
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Figure 1 Examples of a-index profiles.

The propagation characteristics of an optical fiber

are governed by the scalar Helmholtz differential
equation [1]

ay 1d 2
d—rf+;7‘f+{n2(r)k2 —32—%}1/:0 (2)

This scalar wave equation is the simplification of
the exact vector wave equation under the “small
index gradient™ and “‘weakly guiding” approxima-
tions {1]. When A < 1 in an optical fiber, the scalar
approximation yields results that are very-close to

the exact vector formulation, and even for larger -

differences between the core and cladding refractive
indexes, optimum single-mode fiber parameters ob-
tained from the scalar approximation differ negli-
gibly from those obtained using the exact formu-
lation {2]. For fibers used in communication ap-
plications, A < 0.03 is common [3].

In Eq. (2), ¥(r) is the transverse field function
(either the electric field or the magnetic field), r is
the radial coordinate, n(r) is the radial refractive
index profile, k is the vacuum wave number, 8 is
the propagation constant which is to be computed,
and m is a mode parameter given by

1 for TEq, and TMg, modes (p = 0)
m=1{p+1 for EH, modes (p € N)
p — | for HE,, modes (p € N)

(3)

Here, N is the set of natural numbers.

Modes with the same propagation constants are
grouped under a linearly polarized (LP) mode clas-
sification. Each propagating mode is identified by
an LP,, designation where m is defined in Eq. (3)
and /is identical to the value in the traditional HE,,
EH,, TEy, and TM,; mode designation [3].

We need to solve the differential equation to
compute the propagation constants. From the ro-

tational properties of ¢ the associated boundary
condition at the center of the core (r = 0) is

d
[—4/] =0 for m=0
dr 0

(4)
{1,(/(0)=0 for m#0

The other boundary condition applied is the ex-
tinction of field at the jacket, written as

‘l/jackct=1[/r=b:0 (5)

where b is the radius of core and cladding together.

The issue of boundary conditions is complex but
very important in all numerical work. A more ap-
propriate boundary condition in the jacket is an ab-
sorbing boundary condition, but for a large cladding
width, as assumed here, our boundary condition is
appropnate [1]. For an excellent discussion of ra-
diation boundary conditions, see Moore et al. [4].
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We need to rewrite the differential equation to
eliminate dependence on units; this is a more general

formulation that is also easier for computation. We
do this by setting

v
Yo
and
a

where Y is the maximum field amphi;ude and a is

the radius of the core. Substituting E¢g’ (6) into Eq.
(2) we obtain

_di 1 du
dx? ' xdx

2
"Zaz]u =0 (7)

az[kznz(xa) - p2-

By including the refractive index distribution
given by Eq. (1), and normalizing all waveguide

dimensions to the core radius, the above equation
can be rewritten as

d*u 1 du

dx? " xdx
m2
+ [kznf(l —f(x) - 6>~ ?]u =0 (8)
Defining, ¥, the normalized frequency, as

V?=1Ikn}- n3] 9)

and the modified propagation constant, 3, as

2 2
b= (nl/—n;lg) {1 ‘zkz] k*nt - 8% (10) e
l .-.

Eq. (8) becomes
du 1du
dx*  xdx

- Vin? m*]
+{[3—(—n-{~_n—%)f(x)—"x—2]u—0 (11)
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with

O0<x=x<1l

2pAx*
f(x)={ (12)

A x> 1

When the function u and its derivative are single
valued, finite and continuous functions of X, the
first and the second differentials can be approxi-
mated by second order difference formulas. Using
the finite difference approximation, and defining

Vin?

T =

we arrive at the discretized wave equation

2
+ ui[h-lz- {2 + "liz} + Vf(iha) - 5}

+ui+l{ ;112{1+1H=0 (14)

. where £ is the distance between grid points and x

=ih, {i=0,1,2---}.
Wntmg finite dlfference equations at the grid

points, we obtain a set of ‘equations that may be
written as a matrix equation:

Au=90 (15)

To convert the problem into an eigenvalue problem,
we rewrite Eq. (15) as

[T-BIlu=0 (16)

where I is the identity matrix, and Tisa tri-diagonal
matrix. Equatlon (16) has a nontrivial solution if
and only if § is an eigenvalue [5]. Hence, the re-
qu1r~ed normalized propagation constants contained

in § are obtained by finding the eigenvalues of the
tridiagonal matrix T.

EXAMPLES

To construct a system of computer codes that will
run well on IBM-PC compatible computers, we have
taken advantage of the special properties of our ma-
trix formulation. Most importantly, since T is a
quasi-symmetric tri-diagonal matrix, we can use a
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' ]
ribex Usex Interface
Version 2.14
Fiber Paramater Selection Numerical Procedures
Profile Type: Computation:
Step: X Dispersion: X
Graded: P Field Pattern:
Arbitrary: - - Cutoff Frequency:
- ’ .
Profile parameters: Computational Parameters:
Alpha: Starting V: 00.25
Delta: 0,038 Ending V: . 20.00
Rho: N Step Size for V: 00.25
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Core Refractive Idx: 1.520 Mode Number (m,1): 00
Clad Refractive Idx:
Cutoff Lower Bound:
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Points in Core: 032
_ J
Figure 2

similarity transformation to convert T into a real,
symmetric matrix [6]. The eigenvalues of a real,
symmetric matrix may be computed using an effi-
cient O(N?) algorithm (in our case, the tqli rou-

tine from {7], which has an operation count of ap-
proximately 30 N?).

Examples of the Fiber User Interface for a step index fiber.

The computational kernel of our pedagogical
system consists of a trio of computer codes that
compute the normalized propagation constants and
field patterns for cylindrical fibers. Arbitrary refrac-
tive index profiles (which must meet the criteria for
Eq. (2) to be valid) are read from a file on disk,

Normalized Propagation Constant

Figure 3
=00, & = 0.038). Raper = 10 Rege and N, = 32,
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Normalized Field Intensity

1

2
Radius, r

Figure 4  Field patterns for the modes LPy,, LP,,, and LP,, of a step index fiber (« = o, A
=0.038) at ¥ = 10. Rpper = 10Roc and N, = 32.

while a-index profiles are constructed directly within
each program. The numerical computer codes call
upon a common graphical display program.and file
[/0 routines. A single shell program controls the
entire suite of computer codes and coordinates the
loading and execution of code segments as required
to perform the computations requested by a user.
Common to all computer codes in the suite, the
normalized propagation constant is defined by --

k*n? — k?n3 (17)

For propagating modes, kn, < 8 < kn, [3], and so
X must lie between 0 and 1. All computer codes
allow the parameters in Eq. (1) to be varied, as well
as the values of b and N, the fiber radius and num-
ber of grid points in the fiber core, respectively.
To illustrate our system, we have computed the
propagation characteristics of a step index (« = o)

and a parabolic index fiber (@ = 2) over a normal-

ized frequency range of 0-20. These refractive index_’~ y
profiles have solutions that have been studied ana- :-

lytically and numerically by other authors
[8,9,10,11,12}, and our results agree well with pre-
viously published results.

The first step in an analysis is to define the fiber
profile parameters, and the number of points to use
in finite difference approximations. These defini-
tions are made in the shell, as shown in Figure 2 for

the step index case. Then, a user indicates which
computation is desired. The shell runs appropriate
computer codes to generate the desired data and
graphs.

Figure 3 shows the step index fiber dispersion
curves generated using N = 32, and Figure 4 shows
the field patterns for the LP,,, LP,,, and LP,, modes.
The fiber parameters are as shown in Figure 2. Field
intensity patterns for each LP mode are defined by

2

=4

2
Umax

where 1, is the maximum field magnitude along
the fiber radius for each LP mode.

Dispersion curves for a parabolic index fiber are
shown in Figure 5. These curves were generated us-
ing @ = 2 and p = 1; all other parameters were iden-
tical to those for the step index case presented in
Figure 3. Figure 6 shows the field pattern for the
LPm s LP“ , and LP2| modes.

Figures 3-6 were prepared using data passed di-
rectly to gnuplot, a powerful scientific function
and data graphing program available without charge
on a variety of platforms, including IBM-PC com-
patibles. By using gnuplot as our graphical display
routine, we allow students to view plots on any IBM-
PC with a standard graphics adapter and prepare

publication quality graphics on any of the devices
supported by gnuplot.
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Figure 5 Normalized propagation constant vs. normalized frequency for a parabolic index
fiber (« =2, p =1, A =0.038). Raper = 10 R0 and N, = 32.

Using our suite of computer codes, students can
compute dispersion characteristics and field patterns
for a variety of refractive index profiles in one ses-
sion. The computations and graphs can be printed
and compared, facilitating an understanding of the
effect on propagation of varying fiber parameters.

Due to the nature of solutions that can be com-
puted directly from the -scalar Helmholtz wave
equation, the field patterns generated by our system
are limited to showing the radial variations of each

 _mode. Students may determine the angular variation
of a field pattern by relating the LP,,; mode desig-

Normalized Field Intensity

1
Radius, r

Figure 6  Field patterns for modes LPy,, LP,,, and LP;, of a parabolic index fiber (« = o0, p
=1,A =0.038)at ¥V = 10. Rpper = 10Rore and N, = 32,
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nations to TE, TM, HE, and EH mode designations
as described in the introduction, and noting that
there are 2m field maxima around the fiber circum-
ference and / field maxima along the fiber radius
[3]. A further release of our software will include
modules designed to aid in the construction of full
2-D field patterns.

Two factors have a major influence on the results
of our computations: the number of grid points used
across the fiber (which we specify as the number of
points in the core of the fiber), and the width of the
cladding. For modes with low cutoff frequencies,
variations in cladding width produce large changes
in the calculated cutoff frequency, V.. Cutoff fre-
quency increases as the cladding;width decreases.
This is the expected behavior. The fundamental
mode, which has no cutoff frequency when the
cladding is infinite, shows a definite cutoff in real
fiber.

The number of grid points across the fiber affects
the accuracy of the finite difference approximations
used in computing solutions to the wave equation.
In general, a coarse grid results in an apparent shift
of all propagation constants that incregses with fre-
quency. In our experience, 16 points in the core are
sufficient for normalized frequencies below 10. N,
= 128 1s sufficient for most cases of interest, but will
run slowly even on a "486 based computer.

CONCLUSIONS

We have developed an integrated set of computer
codes to evaluate propagation constants and field
patterns of modes by transforming the scalar wave
equation into a set of finite difference equations and
then converting into a matrix eigenvalue problem.
Our computer codes are fast enough to run on an
IBM-PC with a numeric COProcessor, are accurate,
and provide a convenient system with which stu-
dents can explore propagation in optical fibers.
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